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Brennan Measurement Models

Abstract

Almost always the psychometric tasks associated with a large-scale testing
or assessment program involve the use of several psychometric models such as
classical test theory, generalizability theory, item response theory, and equat-
ing/linking models. On a superficial level, these models sometimes seem to
provide nothing more than different ways to address the same issues. However,
a deeper consideration often reveals inconsistencies or ambiguities that have
been considered only occasionally in the literature.

After brief discussions of each of these four models, inconsistencies or am-
biguities among them are illustrated in the context of five questions: what
constitutes a replication; what are true scores; what is error; how should tests
be scored; and how should scores from various tests be combined? These are not
an all-inclusive set of relevant questions, and the discussions provided are not
intended to be particularly extensive. However, these questions represent funda-
mental concerns in measurement, and the discussions illustrate some important
differences among the models in how they approach measurement issues.
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Brennan Measurement Models

Introduction

Almost always the psychometric tasks associated with a large-scale testing
or assessment program involve the use of several psychometric models to ad-
dress various tasks. On a superficial level, these models sometimes seem to
provide nothing more than different ways to address the same issues. A deeper
consideration of the models, however, often reveals discontinuities, inconsisten-
cies, or ambiguities that potentially threaten the inferences drawn about the
psychometric characteristics of the testing program. For the most part, these
problems have been ignored to date—in both the theoretical literature and in
actual practice. The purposes of this paper are to: (a) provide a brief overview
of various measurement models focusing primarily upon some of the more salient
similarities and differences in the model assumptions; and (b) to discuss a few
of the inconsistencies among models that have both theoretical and practical
implications. The models considered are: (1) classical test theory; (2) general-
izability theory; (3) item response theory; and (4) equating/linking models. It
might be more appropriate to characterize equating/linking as a methodology
rather than a model, but we overlook this terminological issue here for the sake
of simplicity.

Some Background and History

It is relatively rare for a paper or book chapter to treat more than one
measurement model. Sometimes two are discussed (e.g., Feldt & Brennan, 1989,
discuss classical theory and generalizability theory; Bechger, Béguin, Maris, &
Verstralen, 2003, discuss classical test theory and item response theory). Almost
never is there a discussion of three or more models (but see Nugent & Hankins,
1992). Yet, many if not most large-scale measurement programs employ all of
the models discussed here.

Furthermore, almost certainly, just about all states will employ all of these
models in their efforts to satisfy the requirements of the No Child Left Behind
Act (NCLB, 2002). For example, classical theory is likely to be used to provide
typical reliability coefficients (e.g., Coefficient alpha and its associated standard
error of measurement). Generalizability theory is likely to be used to provide
reliability-like coefficients and SEMs for writing assessments and other types of
performance assessments. Item response theory is likely to be used to character-
ize items, select items for a test, and perhaps even score tests. Equating/linking
procedures will be necessary to relate scores on a current year’s assessment to
scores on a previous year’s assessment, as well as to link scores across vari-
ous grades. Some approaches to equating/linking rely on descriptive statistics,
solely; other approaches rely on classical test theory or variants of it; still other
approaches rely on item response theory.

Classical Test Theory

Extensive treatments of classical test theory are provided by Gulliksen (1950),
Lord and Novick (1969), and Feldt and Brennan (1989). The theory is based
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on the extraordinarily simple, and seemingly self-evident, equation X = T +E,
where X is observed score, T is true score, and E is error score. The model
is deceptively simple, however, because the two terms on the right-hand side
are latent, or unobservable. For the model to be useful, therefore, additional
definitions and assumptions are required. In most treatments of classical test
theory, the first definition stated is that T is the expected value of X over
replications of the measurement procedure, which leads to E having an expected
value of zero. Then it is often assumed that the covariance of T and E is
zero. These are the central assumptions (not the only ones) that lead to the
usual results in classical test theory. A crucial aspect of these assumptions is
encapsulated in the phrase “replications of the measurement procedure.”

As discussed extensively by Brennan (2001a, c), the history of classical test
theory is replete with different perspectives on, and even arguments about,
“What constitutes a replication of a measurement procedure?” Different an-
swers lead to different conclusions about results such as reliability. As stated
by Brennan (2001c):

Reliability, broadly conceived, involves quantifying the consistencies
and/or inconsistencies in examinee scores. It has been stated that,
“A person with one watch knows what time it is; a person with two
watches is never quite sure.” This simple aphorism highlights how
easily investigators can be deceived by having information from only
one element of a larger set of interest. (p. 7)

In short, the notion of replications is central to a conceptualization of T in
classical test theory, and replications are necessary to estimate reliability. These
replications may be somewhat contrived (e.g., all possible split halves), but
replications in some form are necessary for estimating reliability. Focusing on
replications inevitably causes users of scores to be more uncertain about their
decisions (and appropriately so) than otherwise would be the case (Brennan,
1998a).

Traditionally, in classical test theory two types of statistics predominate:
reliability coefficients (r) and standard errors of measurement (SEMs). For a
typical examinee these statistics are related by the formula SEM = S

√
1− r,

where S is the standard deviation of observed scores, and SEM is sometimes
called the “overall” SEM . A reliability coefficient can be defined as the correla-
tion between replications (actual or hypothetical) of a measurement procedure.
Consequently, there are as many different values for a reliability coefficient and
its corresponding overall SEM as there are definitions of what constitutes a
replication. A particular examinee’s conditional SEM is the standard deviation
of the observed scores for the examinee, which characterizes the uncertainty in
the examinee’s observed scores. The average of conditional SEMs is the overall
SEM .
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Generalizability Theory

Generalizability theory can be viewed an extension or liberalization of classi-
cal test theory through an application of certain analysis of variance (ANOVA)
procedures to measurement issues. The defining treatment of generalizabil-
ity theory was provided by Cronbach, Gleser, Nanda, and Rajaratnam (1972).
Brennan (2001b) provides a recent extensive treatment. Brennan (1983, 1992)
provides a relatively detailed treatment. Shavelson and Webb (1991) provide
an introductory monograph.

In classical test theory, E is a single undifferentiated random error term. As
such, any single application of classical test theory cannot distinguish among
multiple sources of error. By contrast, when Fisher (1925) introduced ANOVA,
he

revolutionized statistical thinking with the concept of the factorial
experiment in which the conditions of observation are classified in
several respects. Investigators who adopt Fisher’s line of thought
must abandon the concept of undifferentiated error. The error for-
merly seen as amorphous is now attributed to multiple sources, and
a suitable experiment can estimate how much variation arises from
each controllable source (Cronbach et al., 1972, p. 1).

In short, generalizability theory liberalizes classical theory by employing ANOVA
methods that allow an investigator to disentangle multiple sources of error that
contribute to the undifferentiated E in classical theory.

In discussing the genesis of generalizability theory, Cronbach (1991) states:

In 1957 I obtained funds . . . to produce, with Gleser’s collaboration,
a kind of handbook of measurement theory. ...“Since reliability has
been studied thoroughly and is now understood,” I suggested to the
team, “let us devote our first few weeks to outlining that section
of the handbook, to get a feel for the undertaking.” We learned
humility the hard way—the enterprise never got past that topic.
Not until 1972 did the book appear . . . that exhausted our findings
on reliability reinterpreted as generalizability. Even then, we did not
exhaust the topic.

When we tried initially to summarize prominent, seemingly trans-
parent, convincingly argued papers on test reliability, the messages
conflicted. (pp. 391–392

To resolve these conflicts, Cronbach and his colleagues devised a rich conceptual
framework and married it to analysis of random-effects variance components.
The net effect is “a tapestry that interweaves ideas from at least two dozen
authors” (Cronbach, 1991, p. 394).

Although classical test theory and ANOVA can be viewed as the parents
of generalizability theory, the child is both more and less than the simple con-
junction of its parents, and appreciating generalizability theory requires an un-
derstanding of more than its lineage. For example, although generalizability
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theory liberalizes classical test theory, not all aspects of classical theory, as
explicated by Feldt and Brennan (1989), are incorporated in generalizability
theory. Also, not all of ANOVA is relevant to generalizability theory; indeed,
some perspectives on ANOVA are inconsistent with generalizability theory. In
addition, the ANOVA issues emphasized in generalizability theory are different
from those that predominate in many experimental design and ANOVA texts.
In particular, generalizability theory concentrates on variance components and
their estimation.

Perhaps the most important aspect and unique feature of generalizability
theory is its conceptual framework. Among the concepts are universes of ad-
missible observations and G (generalizability) studies, as well as universes of
generalization and D (decision) studies. Basically, a universe of admissible ob-
servations specifies all the facets that are of potential interest to an investigator
for some purpose, and a G study is conducted to estimate variance components
associated with this universe. These G study variance components are for sin-
gle conditions of the facets, and they can be used in turn to estimate variance
components for multiple conditions of facets (e.g., the specific number of items
in a test, the number of raters for an assessment, etc.) that characterize a D
study and a universe of generalization—the universe to which an investigator
wants to generalize based on the scores for a specific instance of a measurement
procedure. Another way of viewing a universe of generalization is to say that it
is the set of all replications of the measurement procedure. A single G study can
provide a basis for estimating results for a number of D studies and universes of
generalization that can differ with respect to which facets are fixed and which
are random, the sample sizes for facets, and the structure of the D study.

For example, a G study might be conducted for a writing assessment in which
the facets in the universe of generalization are essay prompts (t) and raters (r).
If a sample of persons (p) is administered nt prompts each of which is evaluated
by nr raters, the G study design can be characterized as p× t× r, and ANOVA
procedures can be used to estimate the seven variance components associated
with this design: σ2(p), σ2(t), σ2(r), σ2(pt), σ2(pr), σ2(tr), and σ2(ptr). Then,
reliability-like coefficients and error variances can be estimated for various D
study designs and universes of generalization, such as the following.

1. The D study design is p× T ×R with decisions based on examinee mean
scores over n′t = 3 prompts and n′r = 2 raters, under the assumption that
prompts and raters are random effects. This means that generalization is
intended to a wider universe of prompts and raters.

2. Same D study design as in Example 1, but n′t and n′r are different from 3
and 2, respectively.

3. Same D study design as in Example 1, but it is assumed that prompts are
fixed effects and raters are random effects. This means that generalization
is intended to a wider universe of raters than the n′r raters used in the D
study. Stated differently, every instance of the measurement procedure in
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the universe of generalization would involve the same set of n′t prompts
but a different set of n′r raters.

4. The D study design is p× (R :T ), where the colon is read “nested within.”
Decisions are based on examinee mean scores over n′t = 3 prompts with
each prompt evaluated by a different set of n′r = 2 raters, under the
assumption that prompts and raters are random effects.

5. Same D study design as in Example 4, but it is assumed that prompts are
fixed effects and raters are random effects.

These examples illustrate the flexibility of generalizability theory.
Generalizability theory can distinguish among several types of error vari-

ances, including, most importantly, relative error variance and absolute error
variance. Relative error variance, σ2(δ), is appropriate when decisions about
objects of measurement (usually persons) are based on rank ordering. By con-
trast, absolute error variance, σ2(∆), is appropriate when the errors of interest
are the actual differences between observed scores and universe scores (analo-
gous to true scores in classical test theory). Various reliability-like coefficients
are typically employed in generalizability theory including generalizability coef-
ficients that employ σ2(δ) and phi coefficients that use σ2(∆). More recently,
other measures of precision that are somewhat reminiscent of indices in the
physical sciences have been proposed by Kane (1996).

The foregoing description of generalizability theory is more correctly a de-
scription of univariate generalizability theory in the sense that each object of
measurement has only one universe score. In multivariate generalizability the-
ory, each examinee has multiple universe scores, each of which corresponds to a
level of a fixed facet. In fact, a univariate generalizability analysis with a fixed
facet is really a simplified version of a more informative multivariate analysis.
A commonly occurring multivariate example is a test organized according to
a table of specifications (see Brennan, 2001b, sect. 9.1, for an overview). In
this example, each category in the table constitutes a level of a fixed facet, and
within each category there is a simple persons-crossed-with-items (p× i) design.
The actual scores used to make decisions are a weighted composite of the cat-
egory scores. Often, the weights are proportional to the numbers of items in
the various categories, but the theory makes no such restriction. Multivariate
generalizability theory is extraordinarily flexible because it can faithfully model
so many different types of measurement procedures.

Item Response Theory

In item response theory, examinee responses are modeled at the item level,
whereas, for the most part, classical test theory and generalizability theory fo-
cus on test scores over items. There are numerous item response theory models;
some for dichotomously-scored items and others for polytomous items. These
models express the probability of an examinee’s response to an item as a func-
tion of an underlying latent or proficiency variable usually denoted θ and defined
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over the range −∞ < θ <∞. Lord (1980) provides an authoritative treatment
of item response theory. A particularly readable treatment is provided by Ham-
bleton, Swaminathan, and Rogers (1991).

For dichotomously-scored items, the three-parameter logistic (3PL) model
is very frequently discussed. For this model, it is assumed that the probability
(P ) that an examinee with ability θ will get item j correct is

Pj(θ) ≡ P (xj = 1|θ; aj , bj , cj) = cj + (1− cj)/ {1 + exp [−Daj(θ − bj)]} , (1)

where xj is the response to the item, bj is the item “difficulty” parameter, aj
is the item “discrimination” parameter, cj is the lower asymptote or “pseudo
guessing” parameter, and D = 1.7. Equation 1 is sometimes called an item
characteristic curve, ICC, or item response function. The bj parameter is the
value of θ at which Pj(θ) = .5(1− cj). The aj parameter is proportional to the
slope at the point θ = bj , which is the inflection point of the ICC. Typically, the
cj parameter is close to the probability of getting the item correct by random
guessing.

There are two frequently cited special cases of Equation 1. Setting cj = 0
gives the two parameter logistic model (2PL). Setting cj = 0, aj = 1, and D = 1
gives the one parameter logistic model (1PL), or the Rasch model.1 Also, each
of these logistic models (in particular, the 2PL model) is sometimes viewed as
an approximation to a corresponding normal ogive model (see Lord & Novick,
1968, p. 399).

In addition to Equation 1, there are two crucial assumptions in item re-
sponse theory: unidimensionality and local independence. The assumption of
unidimensionality means that examinee ability or proficiency can be described
completely by a single latent variable, denoted θ here. The assumption of local
(or conditional) independence means that, for any examinee (or, equivalently,
any population of examinees with the same θ), examinee responses to items are
statistically independent. The local independence assumption means that there
are no dependencies among the items other than those that are attributable to θ.
Strictly speaking, this characterization of item response theory is a description
of unidimensional item response theory. Although multidimensional models are
less frequently discussed, they are sometimes used in simulations, and they are
occasionally used in the National Assessment of Educational Progress (NAEP).

The item response theory models discussed above are for dichotomous data.
There are a number of models that have been proposed for polytomous data.
These models use more complicated expressions than Equation 1, but the as-
sumptions of unidimensionality and local independence are still required.

For a test with n items, a test characteristic curve (TCC) in the total-score

1Proponents of the Rasch model sometimes quarrel with this characterization of the model
by noting that the Rasch model can be developed from different principles that do not require
it to be viewed as a simplifying case of Equation 1 (see, for example, Wright & Stone, 1979,
chap 1).
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metric is simply the sum of the n ICCs:

τirt|θ =
n∑

j=1

Pj(θ), (2)

where τirt is the true score in item response theory, which is a non-linear trans-
formation of θ. Equation 2 provides the expected observed score (in the total
score metric) for an examinee with ability θ.

In item response theory the concept of “information” is used to describe
items and tests, and to obtain certain standard errors. For dichotomously-
scored items, the information provided by item j is given by the item information
function:

Ij(θ) =
[P ′j(θ)]

2

Pj(θ)[1− Pj(θ)]
, (3)

where P ′j(θ) is the first derivative of Pj(θ) with respect to θ. The test informa-
tion function is simply the sum of the item information functions:

I(θ) =
n∑

j=1

Ij(θ). (4)

Given the form of Equation 4, it is clear that items contribute independently
to the test information function, which is not true in classical test theory. For
example, in classical test theory, item discrimination indices are dependent on
the characteristics of the other items in the test.

The precision with which abilities are estimated (under maximum likelihood)
is related to the test information function in the following manner

SE(θ̂) =
1√
I(θ)

, (5)

where θ̂ is the maximum likelihood estimator of θ. For any given value of θ,
Equation 5 provides what is called the conditional standard error of estimation,
or conditional SEE . This serves a role similar to that of the conditional SEM
in classical test theory.

θ is usually scaled to have a mean of 0 and a standard deviation of 1. Any
monotonic transformation of θ could serve equally well (see Lord, 1980, pp.
84–88). However, different non-linear transformations of θ lead to different test
information functions and, hence, different SEE functions.

Item response theory involves certain indeterminacies. Referring to Equa-
tion 1, if we replace θ by θ∗ = αθ+ β, bj by b∗j = αbj + β, and aj by aj/α, then
Pj(θ) is unchanged. This means that the origin and unit for measuring ability
are purely arbitrary. So, for example, if we determine the bj for a set of items
based on one group of examinees and then independently for a second group,
we would not expect the two sets of bj to be identical. Rather, they would be
related by a linear transformation—the same linear transformation that relates
θ for the two groups. That is the basis for item response theory equating of two
forms of the same test.
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Equating/Linking

Equating is a process for transforming scores on one form of a test to the scale of
another form, where both forms are constructed according to the same content
and statistical specifications. Methodology for equating is discussed extensively
by Kolen and Brennan (2004). When the forms differ in their content and/or
statistical specifications, the transformation is referred to as a linking. In ad-
dition, the word “linking” is used for a relationship between scores on different
tests. Linking has been discussed by Mislevy (1992), Linn (1993), Feuer (1999),
and Kolen and Brennan (2004), among others. There are numerous types of
linking, a variety of perspectives on the matter, and a large number of relevant
publications. The common denominator between equating and linking is that
the end result is a transformation that relates scores on two or more forms or
tests, but the strength of the relationship is very much dependent on the similar-
ity of the forms or tests and the conditions under which they are administered.

Equating/linking is an important issue for practically every testing program.
For example, K-12 testing programs use equating procedures to transform scores
on new forms of their tests to some original scale. Linking procedures are used
to relate scores for tests developed for different grades. For many states, the
NCLB Act will necessitate the development of many more tests than in the past
(e.g., every-student testing in math, reading, and eventually science in grades
3-8), which will lead to a substantial increase in the amount and difficulty of
equating/linking.

The methodologies used in equating and linking are an eclectic set. Some
procedures (e.g., observed-score equipercentile equating) don’t even formally
recognize the existence of true scores, which are central to classical test theory,
generalizability theory, and item response theory. Other procedures (e.g., item
response theory true-score equating) provide transformations in terms of true
scores, which are unusable in practice unless one substitutes observed scores for
true scores. That is precisely what is usually done, but there is no theoretical
justification for doing so. Given these types of discontinuities, it is perhaps
remarkable how well equating usually seems to work, but it is also disconcert-
ing that there is often only a tenuous relationship between equating/linking
procedures and various elements of the previously discussed models.

Inconsistencies Across Models

The models that have been discussed are quite well developed and widely
used, but, in many respects, they are not well integrated. For example, it is not
at all unusual for an assumption used in, say, equating test forms to be blind to
an assumption used to document the reliability of scores for those forms.

In considering relationships among models, it is important to pay attention
to both mathematical and conceptual issues. Mathematics can address syntac-
tical similarities, but semantics and inference require attention to conceptual
issues. Of the models discussed above, the two that are probably the most
closely integrated are classical test theory and generalizability theory. Both
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conceptually and mathematically, it can be argued that classical test theory is
a special case of generalizability theory. It can also be argued that classical
test theory is a special case of item response theory, but such arguments are
sometimes more mathematical than conceptual, even though some of the words
used in both theories (e.g., difficulty and discrimination) are the same.

Perhaps the most obvious inconsistency among these models is that item
response theory pays particular attention to items, whereas the other models
are largely test-score based. However, this obvious difference is not nearly as
important as differences in what constitutes a replication, differences in def-
initions of true scores, differences in the conceptualization and estimation of
error, differences in how tests are scored (i.e., how true scores or values of a
latent variable are estimated, and different perspectives about how scores from
various tests should be combined. These five issues are discussed next.

What Constitutes a Replication?

Reliability (either a coefficient or an SEM ) involves quantifying the consisten-
cies and/or inconsistencies in examinee scores over replications. It follows that
grasping the concept of reliability and its estimates involves grappling with the
question: “What constitutes a replication of a measurement procedure?” (See
Brennan, 2001a.)

Generalizability theory is especially well-suited for providing a detailed spec-
ification of replications. However, we do not need to invoke the full conceptual
framework of generalizability theory to capture one very important distinction—
namely, the notion of replications is operationalized in part by specifying which
sets of conditions of measurement (items, occasions, tasks, raters, etc.) are fixed
for all replications and which are random (i.e., variable) over replications. In
generalizability theory, a set of conditions of measurement is called a facet. So,
the notion of replications involves specifying which facets are fixed and which
are random.

Careful thought about replications requires that an investigator have clear
answers to two questions:

1. What are the intended (possibly idealized) replications of the measurement
procedure?

2. What are the characteristics of the data actually available, or to be col-
lected, to estimate reliability?

It is particularly important to note that if a facet is intended to be random
(Question 1), but it is effectively fixed—e.g., only one instance—in a particular
set of data (Question 2), then any reliability coefficient computed using the data
will likely overstate matters, and error variance will be understated.

Many apparent conflicts in reliability results can be explained by careful
consideration of these matters. For example, conventional wisdom holds that
group means are more reliable than scores for individuals. Brennan (1995) has
shown that this conclusion is not necessarily true, and he has explained why it
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can be false in terms of which facets are fixed and which are random for various
group-mean reliability coefficients. Also, Brennan (2001b, pp. 127–129) has
shown how differences in the magnitudes of traditional coefficients of reliability
are explainable in terms of fixed versus random facets.

Historically, in item response theory, the terms “fixed” and “random” have
not been widely used. However, these notions play a role in the theory. Specif-
ically, in typical treatments of item response theory, the n items are fixed, or,
more correctly, the parameters of the items are fixed. That is, a replication
would involve a set of n items with identically the same item parameters. This
notion of a replication is much more restrictive than that of classically parallel
tests, and dramatically more restrictive than that of randomly parallel tests in
generalizability theory. In effect, there is no assumed sampling of content in
the usual item response theory models, whereas other models permit content
sampling. One clear implication is that, all other things being equal, SEMs (or,
more correctly, SEEs) in item response theory will be smaller than SEMs in clas-
sical test theory or generalizability theory solely because of model assumptions
(see, Lee, Brennan, & Kolen, 2000, pp. 14–16).

What are True Scores?

Theories of measurement make repeated reference to true scores (or scores on
some latent trait). As noted above, the most obvious example is the classical
test theory model, but generalizability theory and item response theory have
their own versions of these concepts. Since true scores are unobservable, they
must be defined for these theories to have any utility. The manner in which
these entities are defined can make a very big difference

For example, as noted by Brennan (2001c),

Lord and Novick (1968) go to considerable length distinguishing be-
tween the “expected-value” and “platonic” notions of true scores.
Basically, the “expected-value” notion defines true score as the ex-
pected value of observed scores, whereas the “platonic” notion refers
to a known-to-be-true attribute of an object. As Lord and Novick
demonstrate, the two notions are not the same, and they can lead to
considerably different results. Classical theory and generalizability
theory employ the expected-value notion, but many public state-
ments about true scores have a much more platonic flavor—i.e, true
score is frequently discussed as if it were Truth. (p. 7)

Classical test theory and generalizability theory employ the expected-value
notion of true score. By contrast, when item response theory is used with
dichotomously-scored items, some of the arguments among proponents of the
1PL and 2PL models vis-a-vis the 3PL model are essentially arguments about
what shall be considered true score. The 3PL model with its lower asymptote
is reasonably consistent with defining true score as an expected value, because
it acknowledges that a low-ability examinee has a positive probability of a cor-
rect response. By contrast, the 1PL and 2PL models require that low ability
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examinees have a probability-of-correct response approaching zero. It appears
that these latter models are based on defining true score in the more platonic
sense of “knowing” the answer to an item, as opposed to getting it correct.2

Recall, as well, that in traditional treatments of item response theory, the n
items in an analysis are fixed, which means that true scores given by the test
characteristic curve in Equation 2 are for the fixed set of items. By contrast
in classical test theory, true score is defined as the expected value of observed
scores over forms that are “similar” in some sense, and in generalizability theory,
true score (called “universe score”) is the expected value over randomly parallel
forms. These differences, which are often unacknowledged, have important the-
oretical and practical implications, especially for item response theory vis-a-vis
the other two theories.

What is Error?

In his introduction to Generalizability Theory Brennan (2001) states:

The pursuit of scientific endeavors necessitates careful attention to
measurement procedures, the purpose of which is to acquire informa-
tion about certain attributes or characteristics of objects. However,
the information obtained from any measurement procedure is fallible
to some degree. This is evident even for a seemingly uncontroversial
measurement procedure such as one used to associate a numerical
value (measurement) with the length of an object. Clearly, the mea-
surements obtained may vary depending on numerous conditions of
measurement, such as the ruler used, the person who records the
measurement, lighting conditions, and the like.

Although all measurements are fallible to some extent, scientists seek
ways to increase the precision of measurement. To do so, they fre-
quently average measurements over some subset of predefined con-
ditions of measurement. This average measurement serves as an
estimate of the “ideal” measurement that would be obtained (hypo-
thetically) by averaging over all predefined conditions of measure-
ment. A substantive question then becomes, “How many instances
of which conditions of measurement are needed for acceptably pre-
cise measurement?” For example, if prior research has demonstrated
that the choice of ruler has little influence on measurements of the
length of certain objects, but considerable variability is associated
with the persons who record measurements, then it is sensible to
average measurements over many persons but few rulers.

Another way that scientists sometimes increase the precision of mea-
surement is to fix one or more conditions of measurement. For ex-
ample, a specific ruler might be used to obtain all measurements of

2Of course, these models might be adopted merely as approximations to the 3PL model or
some other model.
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the length of an object. However, the choice of a specific ruler for
all measurements involves a restriction on the set of measurement
conditions to which generalization is intended. In other words, fixing
a condition of measurement reduces error and increases the preci-
sion of measurements, but it does so at the expense of narrowing
interpretations of measurements. (p. 1)

Differences in the underlying notions of true score are a primary contribut-
ing factor to different conceptions and estimates of error. In classical theory
and generalizability theory, error does not mean mistake, and it does not mean
“model misfit” in the usual sense of that term. Rather, important aspects of
error are defined directly or indirectly by the investigator. This is eminently
obvious in generalizability theory which requires that the investigator explicitly
define both true score (i.e., universe score) and the type of error under con-
sideration. In classical theory, the investigator effectively defines error through
specifying a data collection design. That is why traditional coefficients of inter-
nal consistency, stability, and stability and equivalence typically lead to different
estimates of error variance. That is, the error variances associated with these
coefficients are not different estimates of the same quantity; rather, they are
estimates of different quantities. It is often unrecognized, but nonetheless true,
that the investigator through various overt or hidden choices is actively involved
in deciding what shall be considered as error.

There is no E term per se in item response theory, but there are different
notions of error that are often discussed in the model. For example, the extent
to which the model does not fit the data is a type of error. Rarely, however,
is model misfit reported as a quantified amount; rather, various methodologies
are employed to assess model (mis)fit. Also, the conditional SEEs given by
Equation 5 are usually used in much the same way that conditional SEMs is
used in classical test theory or generalizability theory. Very often, however, the
two statistics are not comparable for any one of three reasons.

First, given the definition of the test information function in Equation 4, the
SEE in Equation 5 applies only to maximum likelihood estimates (MLEs) of
θ. There are other item-response-theory estimators of θ; and, in many practical
circumstances, number-correct scores (or transformations of them) are used to
make decisions, even if item response theory is used for other purposes in the
testing program. Under such circumstances, Equations 4 and 5 need to be
modified.

Second, neglecting the difference between an SEE and an SEM , it is of-
ten stated that, under item response theory assumptions, conditional SEMs are
larger at the extremes of the score scale than in the middle. By contrast, in clas-
sical test theory and generalizability theory, almost always conditional SEMs are
smaller at the extremes than in the middle. This is a dramatic difference that
is sometimes used as an argument against the credibility of conditional SEMs
in classical test theory and generalizability theory. However, this difference is
almost always an artifact arising from the choice of the θ scale (see Brennan,
1998b, pp. 326–328), and, as noted above, there is no theoretical virtue to any
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particular choice of scale.
Third, even if we view the conditional SEEs given by Equation 5 as con-

ditional SEMs, they do not distinguish among multiple sources of error. In
fact, given the unidimensionality assumption of item response theory, there is
no obvious role for multiple sources of error.

Recognizing this problem, Bock, Brennan, and Muraki (2002) have suggested
an ad hoc approach for incorporating multiple sources of error in an item re-
sponse theory analysis for a test consisting of items scored by multiple raters.
This is a simple matter in generalizability theory, but as Bock et al. (2002)
note:

Regrettably, a similar straightforward approach to estimation of pro-
ficiency from multiple ratings does not exist in present item response
theory (IRT). An essential assumption of IRT is that the scores in
the examinee’s response . . . are conditionally independent, given the
examinee’s level of proficiency. This is not true of multiple ratings
of a response to a given item: They provide additional information
. . . only to the extent that they attenuate rater error.

Although treating multiple ratings as if they were separate items in
an IRT analysis would not in general bias estimation of examinee
proficiency, the standard error of estimate would be biased down-
ward. (p. 365)

The ad hoc solution proposed by Bock et al. (2002) involves a modification of
information functions based on results from a generalizability analysis. The net
effect is to adjust the SEEs so that they incorporate error attributable to both
items and raters; that is, in a sense, the procedure induces more random error
into the model.

There are at least two other classes of approaches that have been proposed
for introducing more randomness along the items dimension into item response
theory models. Both approaches attempt to relax the “fixed items” assumption
of traditional item response theory analyses. The first approach, discussed by
Kolen and Harris (1987), uses both multivariate generalizability theory and item
response theory to model tests developed according to a table of specifications.
In effect, in their approach the items in a particular test form are viewed as
a sample from a stratified universe of items. In the second approach, prior
distributions are placed on item parameters (see, for example, Glas & van der
Linden, 2003). Then, sampled values of the item parameters are viewed as
realizations of a random vector. This approach is being actively discussed for
computerized adaptive testing in the context of using item forms or templates.
There are also other Bayesian approaches that effectively introduce randomness
into item response theory models, although their primary purpose is usually
to improve parameter estimation, especially the estimation of ability (see, for
example, Mislevy 1993).

To this point, the notion of error has been tied to the extent to which an
examinee’s observed or estimated score is, in some sense, a “good” estimate of
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his/her personal parameter (true score, universe score, latent ability or profi-
ciency, etc.). Loosely speaking, this involves generalization from a sample of
behavior to some “universe” of behavior. By contrast, traditional treatments
of statistics emphasize generalizing from a sample of persons to a population of
persons, with the persons’ scores typically treated as fixed. So, errors are with
respect to sampling of persons. This is also the focus of most statistics used to
quantify errors in equating/linking (see Kolen & Brennan, 2004). Indeed, this
discontinuity between the treatments of error in many measurement models and
the treatments in the equating/linking literature is remarkable. It also seems
problematic, because important decisions about examinees are frequently based
on equated or linked scores, which are certainly fallible to some extent, and the
degree of fallibility must depend in some sense on both the sampling of persons
and the sampling of behavior.

On balance, then, different measurement theories are quite different with
respect to their conceptions of error, how to quantify it, and how to explain
it. Since error is so fundamental in measurement, such inconsistencies among
the theories cast considerable doubt on their interchangeability at the current
time. For the most part, the different theories do not provide alternatives to
answering the same questions about error; rather, they more frequently provide
answers to different questions about error.

How Should Tests be Scored?

Deciding how to score a test can be considerably more complicated than it may
appear, and the actual decision made is sometimes based on the psychometric
model that is adopted. Traditionally, for a test consisting of multiple-choice
items, the score that is used is simply the number of items the examinee got
correct, which is usually called the examinee’s raw score. However, there are
some testing programs (e.g., the SAT ) that use a so-called “formula score” that
adjusts the raw score for the possibility of getting items correct by guessing.
There is a long-standing debate about the practical and psychometric benefits
of such corrections for guessing, but that debate pales by comparison with ar-
guments concerning the differential weighting of items that is often discussed in
item response theory.

For example, for the 2PL model, a so-called “sufficient statistic” for θ is
the sum of the aj terms for the items that an examinee gets correct.3 Clearly,
then, if the sufficient statistic is used to estimate θ, different items contribute
differentially to the examinee’s score. Matters are even more complicated for
the 3PL model, because a sufficient statistic does not even exist, which leads
psychometricians to use other methods for estimating θ. These methods are
well-described in a recent book edited by Thissen and Wainer (2001), and will
not be considered further here, except to note the obvious—namely, procedures
for obtaining examinee scores in item response theory can be very complicated

3A sufficient statistic contains all the information in the data for estimating some unknown
parameter, here θ.
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and counter-intuitive for lay persons. In particular, it is quite possible for ex-
aminees with lower/higher raw scores to get higher/lower estimates of θ. These
problems are a principal reason that number-right or “summed” scores are be-
ing actively considered by many researchers in item response theory (see, again,
Thissen & Wainer, 2001).

When items are not scored dichotomously, other complexities arise. The
quintessential example is an essay prompt for which a small number of scores are
defined according to a rubric. Almost always these scores are consecutive inte-
gers (e.g., 0, 1, 2, 3, 4, 5, 6). Arguments often arise, even among content-matter
experts, about the appropriateness of the rubric’s statements about particular
scores. Also, complicated questions can arise about the relative values of the
score points. For example, is an essay scored 4 really twice as good as an essay
scored 2? In a sense, the answer is “yes” for traditional scoring procedures,
but not necessarily for scoring procedures that might be used in item response
theory.

How Should Scores from Various Tests be Combined?

In many environments, decisions are based on examinee performance on multiple
tests or tests divided into multiple parts (e.g., testlets). Indeed, this is a virtual
requirement under the NCLB legislation. There is substantial debate among
both lay persons and measurement specialists about how scores from multiple
tests should be combined. Sometimes the debate focuses on the perceived or
judged relative “importance” of the assessments. For example, suppose an ex-
pert or agency argued that scores on an essay test are twice as important as
scores on a multiple-choice test of writing skills. What does that mean? Let
us suppose that there is one essay scored on a scale of 0-6, and there are 27
multiple-choice questions. One answer to the “twice as important” question is
obtained by multiplying essay scores by 9. That is, letting X be essay score and
Y be multiple-choice score, the composite score is defined as

C = (9)X + (1)Y = 9X + Y

Then, the maximum multiple-choice score will be 27, the maximum essay score
will be twice as large (namely, 54), and the maximum composite score will be
81. Alternatively, if X and Y are the corresponding proportion correct scores,
then the composite mean score is

C = .9X + .1Y,

and the weights are .9 for the essay and .1 for the multiple-choice test, which
sum to 1 (the usual convention).

These types of weights are sometimes called “a priori” or “nominal” weights.
They may be quite justifiable and have considerable “face validity,” but they
may not produce results that are otherwise acceptable. For example, scores for
a single essay prompt are not likely to be very reliable, while scores for a 27-item
multiple-choice test might well have moderate reliability. If so, the reliability of
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the composite scores (C or C) will be dominated by the reliability of the essay
scores, which is the less reliable component of the composite. Hence, composite
scores will have relatively low reliability.

Furthermore, if we focus on the variability of the composite scores, it is
unlikely that the nominal weights or .9 (for the essay) and .1 (for the multiple-
choice test) will be reflected in the relative contribution of the essay and multiple-
choice scores to the variability in the composite scores. These relative contri-
butions are usually called “effective” weights, as distinct from the a priori or
nominal weights (see, for example, Brennan, 2001b, pp. 305–307, who discusses
these matters in the context of generalizability theory). In other words, it is
entirely possible that the variability among examinees’ composite scores will be
influenced more by the multiple-choice scores than the essay scores.

The foregoing description of nominal and effective weights has been couched
in terms of classical test theory or generalizability theory. Similar issues arise
in item response theory, but the methodologies for addressing these issues are
quite different and may lead to substantially different results.

Furthermore, composite scores present substantial challenges for equating.
The essential problem is this: should composite scale scores be obtained through
equating the composite directly or through a weighed sum of the equated scores
for the component parts. In either case, issues of weighting arise, and the two
procedures are not likely to give the same results.

Concluding Comments

This paper has considered some inconsistencies or ambiguities among four
psychometric models (classical test theory, generalizability theory, item response
theory, and equating/linking models). These inconsistencies or ambiguities have
been illustrated in the context of five questions: what constitutes a replication;
what are true scores; what is error; how should tests be scored; and how should
scores from various tests be combined? These are not an all-inclusive set of
relevant questions, and the discussions provided are not particularly extensive.
However, these questions are fundamental to measurement itself, and the dis-
cussion of them illustrates some important differences among the models in how
they approach measurement issues.

Given the discontinuities and ambiguities across measurement models, it is
natural to ask which model provides the correct or right answer to the questions
posed. For the most part, there is no right answer, and investigators search-
ing for that “Holy Grail” will be forever disappointed. The models are just
that—models, not reality; each of them has its own set of assumptions, and
the assumptions do not mesh perfectly across models. Practitioners sometimes
do not realize that model assumptions are not always chosen because they are
thought to reflect reality. Rather, assumptions are often chosen because they
seem to be natural ways, in the context of a particular model, to solve or at
least simplify otherwise intractable estimation issues.

Arguments over assumptions often arise in discussions about various models,
particularly discussions of classical test theory vis-a-vis item response theory.
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Classical test theory uses a very small number of simple definitions and relatively
weak assumptions. “Weak” in this context does not mean wrong; it merely
means not strong and/or not demanding assumptions about distributional form.
By contrast, item response theory makes much stronger assumptions. Strong
assumptions generally lead to “strong” results, but of course the strength of the
results depends on the credibility of the assumptions.4

The weak assumptions in classical test theory permit the derivation of a
remarkably large number of very useful results. Still, classical test theory cannot
be used to draw all of the inferences that some decision makers want to make.
By contrast, many of the most intractable problems in measurement become
trivial if the assumptions of item response theory hold. However, the item
response theory assumptions are so strong that they are likely false in almost
all situations. Consequently, it is important to consider the extent to which item
response theory results are robust with respect to assumption violations, and/or
the extent to which a particular application of item response theory challenges
its assumptions. For example, in typical equating contexts with intact test
forms, item response theory assumptions are not severely challenged, and item
response theory has been shown to work very well for equating in numerous
testing programs. (These are contexts in which classical procedures and item
response theory procedures tend to give very similar results.) In vertical scaling,
however, the item response theory assumptions are severely challenged, and we
are usually much less convinced that the model is working as well as we would
like. (Different procedures for vertical scaling tend to give different results, as
illustrated by Kolen & Brennan, 2004, chap. 9.)

It is the contention of this author that the major measurement models are
well-developed and generally internally consistent, but the field of measure-
ment as a whole is not nearly as well integrated as one would ideally like. Too
frequently, apparent similarity across models in terminology, notation, and/or
concepts masks differences that have important theoretical import and/or real
practical consequences. There is still much work to be done.

4Recently, Holland and Hoskens, 2003, have provided an ingenious integration of aspects
of classical test theory and item response theory, but their work does not resolve all disconti-
nuities between the two theories.
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