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The purpose of this instructional module is to provide the basis for 
understanding the process of score equating through the use of item 
response theory (IRT). A context isprovided for addressing the merits of 
IRT equating methods. The mechanics of IRT equating and the need to 
place parameter estimates from separate calibration runs on the same 
scale are discussed. Some procedures for placing parameter estimates 
on a common scale are presented. In addition, IRT true-score equating 
is discussed in some detail. A discussion of the practical advantages 
derived from IRT equating is offered at the end of the module. 

The primary purpose for implementing testing under 
standardized conditions is to provide a means of measuring or 
evaluating a group of examinees’ skills that is as fair and 
objective as possible. Test scores are often used for such 
purposes as the assessment of the abilities and/or skills of 
individuals who are competing for college admissions or 
seeking professional certification. This evaluation of test scores 
(when used in conjunction with other information) may lead to 
a decision to exclude a candidate from some academic program 
or to limit the ability of an examinee to practice the profession 
of hisher choice. In addition, important funding decisions and 
decisions regarding school curricula, etc., are sometimes made 
on the basis of the standardized test scores of groups of 
students. 

Because of the importance often placed on the results of 
standardized testing, it is essential that the resulting test 
scores provide a fair and equitable evaluation of the skills or 
abilities that the test is purported to measure. Indeed, the 
provision of a fair and equitable means of psychological or 
educational assessment is one of the major reasons for the 
existence of standardized testing. 

A number of situations may exist that result in a 
nonstandard testing experience and, consequently, an unfair 
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evaluation of an examinee’s skills or abilities. These situations 
include those related to the physical testing environment as 
well as the administration of the test and the actual content 
and psychometric characteristics of the test. 

One important way that large-scale testing programs 
attempt to  ensure testing under standardized conditions is to 
try, as much as possible, to protect the security of their 
examinations. That is, every possible effort is made to ensure 
that some examinees will not be advantaged by preknowledge 
of the questions presented in an examination. In order to  
ensure that one or more examinees will not encounter test 
questions they may have previously seen, most testing 
programs develop many forms or versions of the same test. For 
example, the College Board Admissions Testing Program 
introduces a new form of the Scholastic Aptitude Test (SAT) at 
every national test date. 

Although use of multiple forms of the same test ensures 
fairness to examinees in that no examinee is advantaged 
because he or she had preknowledge of the test questions, use 
of multiple forms of a test raises new fairness and equity issues, 
issues that are related to the similarity of the characteristics of 
the different test forms. Because it is virtually impossible for 
individuals constructing the multiple forms of the test to 
develop them in such a way that they are completely similar in 
reliability, difficulty, etc., the possibility exists that examinees 
may be advantaged simply because they took an easier or more 
reliable form of a test. 

Test-equating procedures-both classical test theory proce- 
dures (i.e., traditional procedures; see Kolen, 1988) and 
item response theory (IRT) procedures-were developed in 
order to provide comparable scores on multiple forms of the 
same test, consequently avoiding some of the possible inequi- 
ties that could occur if one examinee took a more difficult form 
of a test than that taken by another examinee. 

It is important to emphasize the word difficulty when one 
refers to equating procedures; that is, it is important to 
understand that equating methods, both classical and IRT 
methods, were designed to take into account minor differences 
in form-to-form difficulty. These equating procedures were 
never intended to take into account large differences in 
form-to-form difficulty, reliability, or test content. 

Unfortunately, many practitioners believe that IRT meth- 
ods, because they fall into a category of equating methods 
referred to as true-score methods (as compared to observed- 
score methods), provide alternatives to classical test equating 
procedures in situations that require the equating of different 
tests (not alternate forms of the same test) that vary markedly 
in content, difficulty, or reliability. No equating procedure will 
function adequately in such situations. 

According to Angoff (1984), there are four restrictions or 
requirements that must be met in order to say that two test 
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forms have been equated: (a) the test forms to be equated 
should measure the same ability; (b) the resulting raw score to 
scale score conversion should be independent of the data used 
in deriving it and should be applicable in all similar situations; 
(c) scores on the two test forms should, after equating, be 
interchangeable in use; and (d) the equating should be 
symmetric, or the same, regardless of which test form is 
designated as the base. Angoff further points out that equating 
and the issue of unique conversions can really only be 
addressed when the test forms are parallel. 

A number of comments can be made about these restrictions 
or requirements. First, while one of the restrictions requires 
that the two test forms measure the same ability, it is not 
specified that the ability be unidimensional. However, unidi- 

IRT equating involves a) selecting a 
design, b) placing parameter 

estimates on a common scale, and 
c) equating test scores. 

mensionality, or a close approximation to it, is a requirement of 
current IRT equating methods (see Hambleton, 1989). This 
means that somewhat tighter restrictions on the nature of the 
test data must be met for IRT equating applications. Second, 
the generalizability of the equating conversions from the data 
used for developing them may fall short in practice when 
classical procedures are used any time the groups taking the 
test forms to be equated are not random samples from the same 
population. The use of nonrandom samples is typical of 
practical equating situations. Third, the criterion of inter- 
changeability of scores really only holds when the test forms 
are equally reliable. 

Lord’s definition of equating (Lord, 1977) reflects in greater 
detail Angoff s third requirement, called the equity require- 
ment: 

Transformed scores y* and raw scores x can be called 
“equated” if and only if it is a matter of indifference to each 
examinee whether he is to take test X or test Y (p. 128). 

Under this definition, (a) test forms measuring different 
abilities cannot be equated (comparable to Angoffs first 
restriction), (b) observed scores (those scores actually obtained 
by test takers) on unequally reliable test forms cannot be 
formally equated (this would violate Angoff s third restriction), 
and (c) observed scores on test forms of varying difficulty 
cannot be equated. Lord (1977) states, 

If tests X and Y are of different difficulties, the relation 
between their true scores is necessarily nonlinear, because of 
floor and ceiling effects. If two tests have a non-linear relation, it 
is implausible that they should be equally reliable for all 
subgroups of examinees. This leads to the awkward conclusion 
that, strictly speaking, observed scores on tests of different 
difficulty cannot be equated (p. 128). 

While the above suggests that, in theory, observed-score 
equating is not possible except when test forms are of exactly 
equal difficulty, test equating is routinely carried out for test 
forms that are not strictly parallel. There will be problems in 
practice, however, any time the test forms to be equated are not 
close to the same level of difficulty and observed scores are 
used. For this reason, and also to satisfy Angoffs second 
restriction (that the conversions should be independent of the 
group used to obtain them), IRT equating methods, which are 
true-score based, have appeal for the solution of equating 
problems. 

IRT Equating Process 

Basic Principle of IRT Equating 

Hambleton (1989) provided an  introductory treatment of item 
response theory models, assumptions, and properties. One of 
the basic properties of item response theory discussed by 
Hambleton is the following: If the data used for the equating fit 
the assumptions of an IRT model and good estimates of the 
parameters for the model are obtained, it is possible to develop 
an estimate of an examinee’s ability that is independent of the 
set of items (i.e., test form) to which the examinee responds. 
Consequently, it does not matter if an examinee takes an easy 
or a hard form of a test; the examinee’s ability estimate 
developed from either test form will be identical, within 
measurement error, provided the parameter estimates for both 
forms have been placed on the same scale. Therefore, the 
differences in difficulty of the test forms taken by the examinee 
are no longer a problem. The examinee would receive the same 
ability estimate regardless of the particular form he or she 
takes. Further, if one is willing to use the underlying IRT 
ability scale for score reporting purposes, IRT reduces the need 
for equating test forms to the process of placing item parame- 
ter estimates on the same scale. 

Unfortunately, large-scale testing programs are not always 
able to report scores using the IRT ability scale or metric. 
These programs usually continue to report scaled scores on the 
scale that was initially chosen for the particular test of interest, 
even though IRT may have subsequently been used for equat- 
ing purposes. Fortunately, because ability estimates can be 
mathematically related to specific true scores on each of the 
two test forms, IRT equating of these true scores can be used 
and traditional scaled scores can be reported. 

Kolen (1988) provided an introductory treatment of classical 
linear and equipercentile equating procedures. Similar to the 
equipercentile equating procedure discussed by Kolen, IRT 
equating methods can model either a linear or curvilinear 
relationship between scores on two forms of a test. If the 
relationship between scores on two forms of a test is linear, IRT 
methods will easily model this relationship. On the other hand, 
if the relationship between scores on the two forms is curvilin- 
ear, IRT equating methods can also effectively model this 
relationship. 

Mechanics of IRT Equating 

IRT equating can be viewed as a three-step process. Assuming 
that a suitable IRT model has been chosen (that is, a model 
that fits the data), the first step is to select a data collection 
design for equating. The second step involves placing item 
parameter estimates from separate calibration (parameter 
estimation) runs on the same scale. For some equating designs, 
however, this second step is not necessary. Also, when using 
certain computer programs, such as LOGIST (Wingersky, 
1983), it is often the case that parameter estimation can be 
accomplished in a single calibration run. If a single calibration 
run is used, the item parameter estimates for the two test 
forms to be equated will automatically be on the same scale. 

The third step involves using the relationship between 
abilities and true scores on the two test forms to be equated to 
establish the raw-to-scale relationship for the new form (the 
form requiring equating). As mentioned earlier, if a testing 
program can report scores on the ability metric, the equating 
has been accomplished through the calibration and subsequent 
placing of parameter estimates on the same scale, and the third 
step is not necessary. However, because many testing programs 
report scores on some established scale, such as the familiar 
200 to 800 scale used by the SAT, the third step becomes 
necessary. 
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Step One: Selecting a Design 

There are essentially three data collection designs used in IRT 
equating. These designs are the same as those used with 
traditional linear and equipercentile equating methods; they 
are the (a) single group, (b) random groups, and (c) anchor test 
designs. In the single group design, the same group takes both 
test forms to be equated. In the random groups design, two 
randomly selected groups, of equivalent ability, take different 
forms of the test. In the third design, two groups of examinees 
take different forms of a test; each form contains a common set 
of items (internal anchor) or a common anchor test (external 
anchor) is given with the forms. The groups in this third design 
do not need to be randomly equivalent, and usually they are 
not. 

If classical equating methods are employed, the common 
items linking the two test forms in the third design are used to 
adjust for ability differences in the two groups. If IRT equating 
methods are used, the common items are used to place item 
parameter estimates on the same scale. The common items are 
used for item parameter scaling purposes regardless of whether 
the calibration is carried out in a single LOGIST run or in 
separate calibration runs. 

A question often arises regarding how large a sample is 
necessary to carry out IRT or, for that matter, conventional 
equating. The response to this question is more straightfor- 
ward for IRT equating applications than for classical equating 
applications. An adequate sample size for a particular IRT 
equating design depends on the number of examinees required 
to provide stable estimates of the parameters of the particular 
IRT model used to characterize the data. Larger sample sizes 
are required for the more complex models. Sample sizes 
currently used to calibrate data when the three-parameter 
logistic model is used to equate the SAT typically range from 
2,500 to 3,000 examinees per item, although as few as 1,800 to 
2,000 examinees per item have been viewed as acceptable. 
When compared to classical equating procedures used for the 
SAT, 3,000 examinees taking each item is larger than the 
sample needed if a linear equating method were to be used for 
the test and smaller than desirable if a curvilinear equating 
method, such as one of the equipercentile methods discussed by 
Angoff (19841, were to be used. 

The properties of the common items used in an anchor test 
design have been considered and discussed for both classical 
and item response theory equating methods. (See Cook and 
Petersen, 1987, for a review of recent studies of the properties 
of common items.) It is safe to say that regardless of whether 
one chooses to use classical or IRT equating methods, choice of 
a common item set is very important. For both types of 
procedures, it is important for the common items to mirror, in 
content and statistical properties, the properties of the tests to 
be equated. In addition, a good rule of thumb is that the 
common-item anchor should be at least as long as 20% of the 
total test length. 

The choice of design-single group, random group, or 
anchor test-is often dictated by the practical constraints of 
the testing program. For example, it is very unlikely that a test 
such as the SAT would be equated routinely using a single 
group design. This would require motivating a group of 
candidates to sit and take two forms of the test, most likely at 
the same test date. Even if canxidates were motivated by 
financial remuneration to sit for two tests or were provided 
with some other incentive, it is unlikely that this type of data 
collection design would prove practical over the long run. 

The second design, a random groups design, is unappealing 
for many large-scale testing programs because it involves 
giving an old form (i,e., previously administered form) of the 
test as well as the new form (the form requiring equating) at a 

regular test date. Many testing programs, including the Admis- 
sions Testing Program that administers the SAT, avoid this 
practice as much as possible because of the desire to ensure 
that every examinee takes a new form of the test, thus 
minimizing the possibility that a candidate may be advantaged 
due to preknowledge of the items on a test. 

The design most typically used for the practical reasons just 
described is the anchor test design. However, this design is 
probably the most difficult to execute technically. The quality 
of the equating carried out using an anchor test design depends 
on the similarity of the groups taking the new and old forms of 
the test, the parallelism of the two tests to be equated, and the 
quality of the anchor test. 

Step Two: Placing Parameter Estimates on a 
Common Scale 

As a means of clarifying the need for a separate step to place 
parameter estimates on the same scale, consider the following 
situation: Suppose the same set of items is given to two groups 
of examinees, and the item parameters are estimated twice, 
once in each group. Suppose, too, that the model of choice is the 
two-parameter logistic (2PL) model. Because the item charac- 
teristic curves are supposedly independent of the groups used 
to derive them, the expectation would be that the two sets of 
item parameter estimates would be identical except for sam- 
pling error. However, this is not so. For the 2PL model, 
Stocking and Lord (1983) pointed out that the expression for 
the item characteristic curve is a function of a, (0, - 6 ,  ), where 
the a,, 0, , and b, are the item discrimination, ability, and item 
difficulty parameters of the model. However, for this model the 
origin and unit of measurement of the ability (and difficulty) 
metric are undetermined. This can best be seen by developing 
this algebraically. Consider the expression for the 2PL model 
discussed by Harris (1989): 

Clearly P,(O,) is a function of ur(Oa - bL) .  Suppose now that 0, is 
transformed by a linear transformation to give 0:: 

(2) 
where A is the slope of the linear transformation and B the 
intercept. b, is similarly transformed to give b:: 

and a, is transformed by multiplying by the reciprocal of the A 
parameter of the linear transformation: 

0 2  = A0, + B ,  

bT= Ab, + B ,  (3) 

1 
a T = a,. (4) 

How is the new item-response function PL(O,*) related to 
P,(o,)? P,(O,*)isafunctionofa*L(O,* - b?. However, 

1 
A 
1 
A 

aT(0: - bT) = -aa,(AO, + B - [Ab, + BI) 

= -a , (A0,  + B - Ab, - B )  

The above will be true for any linear transformation of the 
parameters-the scale of the ability metric is undetermined. 
There clearly is an indeterminacy in the model. The same 
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indeterminacy also exists for the three-parameter logistic 
(3PL) model. 

In the LOGIST computer program, this problem of indeter- 
minacy is solved for the 2PL and 3PL models by establishing an 
origin and unit of measurement for the ability (and difficulty) 
metric based on the ability of the group of examinees used to 
calibrate the items. Typically, the mean of the ability estimates 
(6s) is set at zero, and the standard deviation of the 6s is set to 
one. Thus, as part of the calibration procedure, parameter 
estimates are placed on a scale that is defined by the mean and 
standard deviation of the ability distribution of the group 
responding to the items. Other computer programs ~IX the scale 
in different ways. An important point to note is that the 
relationship between scales derived from two different LOGIST 
calibrations will always be linear because they differ only in 
origiq and unit of measurement. It also should be noted that 
when LOGIST parameter estimates are obtained in separate 
calibration runs, and the groups responding to the set of items 
in the two calibration runs are identical in ability, the item 
parameter estimates will be on the same scale and a 
transformation is not necessary. This would occur if a random 
groups equating design were used. Likewise, for the single 
group design, item parameter estimates will be on the same 
scale if two calibration runs were done because the same group 
will have responded to the set of items in each calibration run. 

Because parameter estimates from two separate 2PL or 3PL 
calibration runs differ only in origin and unit of measurement 
(if they differ at all; they will not differ in the single group or 
random groups design if LOGIST is used), the transformation 
required : 3 place two sets of parameter estimates on the same 
scale is a simple linear transformation. Transformation 
methods that have been developed for use with the 2PL and 
3PL models attempt to estimate the parameters of this linear 
transform.ition (i.e., the slope and intercept) in a variety of 
ways. Stocking and Lord (1983) discuss a variety of these 
procedures. 

The simplest 2PL or 3PL transformation method attempts 
to determine the slope and intercept parameters so that the 
transformed mean and standard deviation of the distribution 
of estimated item difficulties from the second calibration are 
equal to the mean and standard deviation of the estimated item 

difficulties from the first calibration. This is analogous to the 
linear score equating procedure discussed by Kolen (19881, 
except that item difficulties rather than observed test scores 
are equated. The linear parameters of the transformation are 
determined using only the items in common to the two 
calibration runs. An example of how to determine this kind of 
transformation follows. 

Suppose that two separate LOGIST calibrations using the 
3PL model have 20 items in common. The mean and standard 
deviation of the item difficulty estimates for the 20 items in the 
first calibration are .76 and 1.06 while, in the second 
calibration, they are .43 and .97, respectively. The parameters 
of the linear transformation can be determined as follows: 

b, - .76 b, - .43 _ _ _ - ~  - 
1.06 .97 

or 
b, = ~ 1.06 (b, - .43) + .76 

.97 
b, = 1.09 b, + .29 

Hence, the slope, or A parameter of the linear relationship, is 
1.09 and the intercept, or B parameter, is .29. 

Once the A and B parameters of the transformation are 
determined, they are applied to all of the parapeter estimates 
in the calibration run to be transformed. So, if b, is the estimate 
of item difficulty obtained from the calibration of item i, anAd b 
denotes the transformed item difficulty estimate, then b: is 
determined as follows: 

6:= A&, + b, (5) 
where A and B are the parameters of the linear transformation. 
The same linear parameters are used to transform the item 
discrimination (6,) and ability estimates (6 =), i.e., 

cii a*= - 
' A  

6 2  = Aha + B. (7) 
Because the pseudoguessing parameter estimate for item i (2 , )  
in the 3PL model is read from the probability metric or Y-axis 
of the plotted item characteristic curve (rather than the ability 
metric or X-axis), no transformation is required. 

As mentioned earlier, simple 2PL or 3PL transformation 
methods are based on determining the linear relationship 
between estimates of item difficulties obtained from two 
calibration runs. Theoretically, ability estimates or estimates 
of item discrimination parameters could also be used to 
establish the transformation, and in some situations are 
actually used. In practice, however, item difficulty estimates 
are most frequently used because they are the most stable of 
any of the parameter estimates. 

Now, suppose that instead of the 2PL or 3PL model, an 
individual decides it is appropriate to use the one-parameter 
logistic (lPL), or Rasch, model. Harris (1989) has provided a 
discussion of the Rasch model. For this model, the expression 
for the item characteristic curve is a function of (0, - bL) .  Here, 
only the origin of the ability (and difficulty) metric is 
undetermined. In the LOGIST program, this problem of 
indeterminancy is solved by establishing the origin of the 
ability (and difficulty) metric based on the ability of the group 
of examinees used to calibrate the items, i.e., the mean of the 
6s is set to zero. Other computer programs fix the scale in 
different ways. Regardless of computer program, however, the 
relationship between the scales derived from two different 1PL 
calibrations (using the same computer program) will differ by 
only a constant. 
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FIGURE 2.  Relationship between ability estimates and 
estimated true scores for Form X and Form Y 

Suppose that two separate LOGIST calibrations using the 
1PL model have 20 items in common and that the mean of the 
item difficulty estimates for the 20 items in the first calibration 
is .76 and, in the second calibration, is .43. The constant of 
adjustment can then be determined as follows: 

b, - .76 = b, - .43 
or 

b, = b, + .33 
To adjust all item difficulty parameter estimates from the 
second calibration to be on the scale of the first calibration, 
simply add a constant, .33. Exactly the same constant would be 
added to the ability estimates from the second calibration to 
put them on the scale of the first. 

The information provided in Figure 1 summarizes the 
previously described item calibration designs and the scale 
properties of the IRT parameter estimates obtained from these 
designs. Several points are worth noting: (a) if it is possible to 
calibrate item responses for two test forms simultaneously, 
parameter estimates will automatically be on the same scale; 
(b) for the single group and random groups data collection 
designs, parameter estimates for the two tests (identified as 
test form X and test form Y in Figure 1) will be on the same 
scde regardless of whether they are obtained in separate or 
simultaneous calibrations; and (c) for anchor test designs, a 
separate scaling step is required to place parameter estimates 
on the same scale if the parameter estimates are obtained in 
separate calibration runs. 

Step Three: Equating Test Scores 

Once parameter estimates for two forms of a test have been 
placed on the same scale, the ability estimate obtained for an 
individual will be the same within measurement error regard- 
less of which form of the test he or she actually took. Therefore, 
if one can report ability estimates to examinees as their test 
scores, the equating is completed. 

If a testing program is unable to report ability estimates to 
examinees, it is possible to translate any value of 8 to corre- 
sponding estimated true scores on the two forms and use these 
estimated true scores as equated scores. If test form X and test 
form Yare both measures of the same ability 8, then estimated 

true scores on the two forms are related to 8 by their test 
characteristic functions: 

n. 

where 
Tx = Test form X estimated true score, 
T, = Test form Y estimated true score, 

and P, (8) and P,(O) are the estimated item-response 
functions for items i (in test form X) andj  (in test form 
Y ) ,  respectively. 

Equations (8) and (9) can be used to transform any 8 (not just 
6s actually obtained from the administration of the test forms) 
to an estimated true score on the respective test forms. Because 
of this and because the item parameter estimates used in (8) 
and (9) are independent of the groups talung the tests, the 
conversion, or relationship between the true scores on the two 
forms, can also be said to be independent of the groups used to 
obtain it. Further, it should be noted that while the 6 s for 
individuals, estimated separately for two test forms, should be 
the same once transformed, the relationship between the 
estimated true scores will certainly be nonlinear if the forms 
differ in difficulty. 

The plot shown in Figure 2 illustrates the relationship 
between ability estimates and estimated true scores for two 
test forms (test form X and test form Y) after the two forms 
have been equated using IRT methods. Differences in difficulty 
between the two forms are reflected in the curvilinear 
relationship between estimated true scores for forms X and Y. 
It can be seen from the plot that form Xis the easier form of the 
test, with higher estimated true scores considered equivalent to 
lower estimated true scores on form Y. However, as can be seen 
in Figure 2, the relationship between ability estimates obtained 
on the two forms is linear, with slope of 1.0 and intercept of 0.0, 
indicating that an examinee’s estimate of ability is the same 
regardless of the test form he or she was administered. 

A practical problem with IRT true-score equating should be 
mentioned at this point. This problem has to do with the fact 
that the scores to be equated on two test forms are observed 
scores (the scores the candidates actually obtained) and not the 
estimated true scores derived from Equations (8) and (9). 
Studies suggest, however, that applying the true-score equat- 
ing results to the actual observed-score data does not lead to 
unreasonable results (see Lord & Wingersky, 1983), although 
there is no theoretical justification for doing this. In most 2PL 
and 3PL model IRT equating applications, this is exactly what 
is done. 

In practice, a fairly simple procedure is followed to provide 
reported scores based on an IRT equating procedure. First, 
abilities (i.e., as) are transformed to estimated true scores on 
the two forms using Equations (8) and (9). Once the 
relationship between estimated true scores on the new and old 
forms of the test is determined, one simple further step is 
involved to establish the relationship between estimated true 
scores on the new test form and reported scores on the scale 
used by the particular testing program. This step involves 
taking the observed-score-to-reported-score transformation for 
the old form in the equating and using this transformation 
with the old form’s estimated true scores. The relationship 
between new and old form estimated true scores is then used to 
derive an estimated true-score-to-reported-score transforma- 
tion for the new form. 

For illustrative purposes, Table 1 provides data to be used in 
an example of the steps that would be taken to determine 
scaled or reported scores for a new form of a test, on a scale that 
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Table 1 
Three-Parameter Model IRT ZTue-Score 
Equating Table for New Form’s Estimated 
True Scores From 40 to 50 
New Form’s Old Form’s Rounded 
Estimated Estimated Scaled 
True Score Theta True Score Score 

50 
49 
48 
47 
46 
45 
44 
43 
42 
41 
40 

2.0089 
1.91 70 
1.8300 
1.7467 
1.6665 

1.51 29 
1.4385 
1.3652 
1.2928 
1.221 0 

I ,5887 

48.71 49 
47.6325 
46.5456 
45.4555 
44.3632 
43.2689 
42.1 738 
41.0773 
3 9.9 790 

37.7761 
38.8788 

700 
690 

6 70 
660 
660 
650 
640 
630 
620 
61 0 

680 

extends from 200 to 800, rounded to units of ten for reporting 
purposes, for estimated true scores between 40 and 50. 

Focusing on, say, a new form’s estimated true score of 45, 
one can see that this corresponds to an ability or theta value of 
1.5887 (determined using Equation (8) in reverse form), which 
in turn corresponds to an old form’s estimated true score of 
43.2689 (determined using equation (9)). Then, 43.2689 is 
treated as if it were an observed score on the old form, and the 
old form’s observed-score-to-reported-score transformation is 
then applied to 43.2689 to yield a reported score of 660. An 
individual who received an estimated true score of 45 on the 
new form and an individual who received an estimated true 
score of 43.2689 on the old form would both receive a rounded 
scaled score of 660. 

It  should be noted that the old form of the test is more 
difficult than the new form; for a given ability level, it yields a 
lower estimated true score than the new form. To demonstrate 
that the old form is more difficult, we can see what an 
estimated true score of, say, 44 would correspond to in scaled 
score terms for the new and old forms. If the old form is more 
difficult, a44 should result in a higher scaled score. For the new 
form, the scaled score can be read directly from the table, 650. 
For the old form, an estimated true score of 44 is closest to the 
entry 44.3632 in Table 1, which rounds to 44 and which 
corresponds to a scaled score of 660. The old form does provide 
a higher scaled score for an estimated true score of 44. 

Although in the example we have been working with 
estimated true scores, the true-score equating transformation 
shown in Table 1 would, in practice, be applied to the observed 
scores that the individuals obtained on the new form in order to 
create scaled or reported scores. 

Practical Advantages of IRT Equating 

In a previous section of this module, two theoretical advantages 
were offered for using IRT equating methods: (a) IRT equating 
may be the best method to use when tests of differing diffi- 
culties are given to nonrandom groups of examinees who differ 
in ability, and (b) IRT equating, because of the properties of 
IRT models, provides conversions that are independent of the 
group or groups used to obtain them. 

Recent research on the application of IRT to the equating 
process has also brought to light a number of possible practical 

advantages that might be gained through the use of IRT 
equating. These advantages include the following: 

IRT equating offers better equating than that offered by 
classical methods at the upper ends of score scales where 
important decisions are often made. As mentioned in the 
previous section, it is possible to equate estimated true 
scores for all values of 8. With classical methods, reason- 
able equating can take place for only those scores 
actually obtained by the test takers supplying data. 
IRT equating affords greater flexibility in choosing 
previous forms of a test for equating purposes. Once a 
number of previous test forms have item parameter 
estimates placed on a common scale, it is possible to 
equate a new test form (once its parameter estimates 
have been placed on the same scale) to any or all of the 
old test forms. 
Reequating is easier should it be decided to not score an 
item after the test is administered. Presently, when 
classical equating methods are used, if for some reason it 
is decided not to score an item, the shortened test must 
be rescored and reequated. If IRT equating of estimated 
true scores is used, the estimated true scores for the 
shortened test can be obtained by simply summing over 
the item characteristic curves for the remaining items in 
the test. 
IRT equating offers the possibility of item-level preequat- 
ing, or deriving the relationship between the test forms 
before they are administered operationally. This is possi- 
ble when item-level pretest data are available and can be 
calibrated, and item parameter estimates can be placed 
on a common scale. The use of IRT for item-level 
preequating offers a unique contribution that cannot be 
obtained using classical methods and data collection 
designs. 

Summary 

In this module, the theoretical justifications and practical 
advantages of IRT true-score test equating procedures have 
been discussed. When tests differ in difficulty, or are unequally 
reliable, and are administered to samples that are not random 
samples from the same population, the formal requirements 
for equating outlined in this module are best met when 
true-score or IRT-based equating procedures are used. As 
pointed out, however, the practical difficulty in using IRT- 
based, true-score equating is that the scores to be equated on 
two tests are not true scores, but observed scores. Results from 
research studies suggest that applying the true-score equating 
results to the observed-score data does not lead to unreason- 
able results, although there is no theoretical justification for 
doing this. The justification is purely a practical one. For 
further discussions of this and other issues involving IRT 
equating, the reader is referred to Lord (19801, Cook and 
Eignor (19831, Skaggs and Lissitz (1986), Petersen, Kolen, and 
Hoover (19891, and Cook and Eignor (1989). 

Self-Test 
In the problems that follow, the numbers of items in the test 
forms are small to simplify numerical calculations. The num- 
bers of items are not representative of the usual numbers of 
items in tests calibrated using LOGIST and equated using IRT 
equating methods. 

1. Two 6-item forms of a test, Form A and Form B, have 
three items in common. Each form was calibrated 
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separately using LOGIST and the 3PL model. The table 
below presents the parameter estimates for the unique 
and common items in Forms A and B. As the first step in 
equating these two forms, use the procedure described 
in the text to place Form A item parameter estimates on 
the scale of the Form B item parameter estimates. Place 
the transformed item parameter estimates in the table. 
Use the following formula for computing standard devia- 
tions in doing necessary calculations: 

S, = - Jn 2x2 - ( z x ) ~  1 
n 

Form A Scale 
Item(i) a, b, c, 

1 1.04 -.68 .22 

I 2 
1.38 .96 .16 

4 1.62 1.22 .16 

6 1.84 -.32 .18 

T 3  .90 -.14 .08 

5 1.28 .06 .12 7 

Form B Scale 
a, b, ct 

1.08 1.23 .17 

1.23 -1.08 .18 

.96 2 4  .16 
1.60 1.32 .10 

.85 -.51 .12 

.56 - 3 4  .07 

2. Use the following table, containing values of P,(8) for 
each of the Form A and Form B items at 8 values of - 1, 
0, and tl ,  to construct an (abbreviated) true-score 
equating table for 8 values of - 1,0, and + 1. 

-1 

.7459 
,2047 
,4956 
,1836 
,4104 
,6242 
,2581 
.lo16 
,4997 

Item(i) 0 

,8386 
.3380 
,7199 
.2485 
,7152 
,9224 
,4988 
,1242 
,7116 

$1 

,9655 
.6323 
.8746 
.7536 
.9108 
,9896 
.8115 
.3657 
.8625 

As an example of how the P,(O)s were calculated, 
consider item 9 at 8 = 1. The general formula for the 
3PL model is 

This becomes 
(1 - .07) 

1 + -1.7(.56)(1 - ( -34) )  P,(1) = .07 + 
.93 

= .07 + 1 + e-1.75168 

.93 - 
- '07 + 1 + .17348 
= .8625 

See Harris (1989) for further examples. 

3. Which form is more difficult-Form A or Form B? 

4. Treat the (abbreviated) true-score equating table in 
Problem 2 as if it were applicable to observed scores. 
Suppose that on Form B,  an observed score of 3 receives 
a scaled or reported score of 50, an observed score of 4 
receives a scaled or reported score of 70, and an observed 
score of 5 receives a scaled or reported score of 90. Use 
linear interpolation (see example below) to determine 
what reported score a candidate should receive who got a 
Form A observed score of 4. 

Example of linear interpolation 
What reported score corresponds to a score of 3.2207 on 
Form B? 

70 1 
4 r 

x .2207 
20 - 1 
x = 4.414 

So, the reported score corresponding to 3.2207 is 54.414 
(i.e., 50 + 4.414). 

Answers to Self-Test 
1. (a) Using the b parameter estimates for the three 

common items, calculate the means and standard devia- 
tions: 

Form A 

- 
bA = 

(1.22) + (.06) + (-.32) 
3 

.96 

FA = .32 

b, = 7 

1 
Sb, = .j J3[(1.22)' + (.06)' + (-.32)'] - (.96)' 

s ,  = .6550 

Form B 

- (1.23) + (G.51) + (-1.08) 
3 

bB = 

-.36 
3 

FB = - 

FB = -.12 
1 

Sb, = 3 J3[(1.23)' + (-.51)' + (-1.08)'] - (p.36)' 

Sbg = .9825 

(b) Setting standard deviates equal: 
b, - (-.12) - bA - (.32) - 

.9825 .6550 
.9825 .9825 

(b,) - .12 - - .6550 (-'32) b -~ 
- .6550 

bB = 1.50 bA - .60 
The slope (A) of the linear transformation is 1.50, and 
the intercept ( B )  is - .60. 
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(c) Using the formulas 

FormA Estimated 
True Score 8 

A t e =  1, 
fi 

Form B Estimated 
True Score 

6; = A6, + B, 

Form A Scale 
Item(i) a, b, c, 

1 1.04 -.68 .22 
2 1.38 .96 .16 

E I 4 1.62 1.22 .16 
.90 -.14 .08 < 3  

where A = 1.50 and B = -.60, the transformed item 
parameter estimates for the three unique Form A items 
are the following: 

Form B Scale 
a1 b, c, 

.69 -1.62 .22 

.92 .84 .16 

1.08 1.23 .17 
.60 -.81 .08 

1.04 
1.50 - '69 for Item 1: &: = - - 

b: = 1.5 (-.68) - .60 = -1.62 
E,X = 2 2  

1.38 
1.50 - '92 €or Item 2: 6; = - - 

6: = 1.5 (.96) - .60 = .84 
Ed = .16 

.90 
1.50 - *" 

€or Item 3: &$ = ~ - 

6; = 1.5 (-.14) - .60 = -.81 
e$ = .08 

The completed table of item parameter estimates would 
then look as follows: 

8 6 5 1.28 .06 .12 I% 

I 6 1.84 -.32 .18 
3 5  -51 .12 

1.23 -1.08 .18 
.96 .24 .16 

1.60 1.32 .10 
.56 -.84 .07 

2. Test Form A is made up of items 1 through 6. At 0 = - 1, 
fi 

= (.7459) + (.2047) + (.4956) 
+ (.1836) + (.4104) + (.6242) 

= 2.6644 

A t 0 = 0 ,  

= (.8986) + (.3380) + (.7199) 

+ (.2485) + (.7152) + (.9224) 

= 3.8426 

Test Form B is made up of items 4 through 9. At 0 = - 1, 
9 

9zB = c Pi(+ 
1=4 

= (.1836) + (.4104) + (.6242) 

+ (.2581) + (.lo161 + (.4997) 

= 2.0776 
A t 0 = 0 ,  

9 

TzB = 2 P&(O) = 3.2207 
1=4 

At8 = 1, 

TxB = fij(l) = 4.6937 

The (abbreviated) true-score equating table would then 
be as follows: 

1=4 

2.6644 
3.8426 
5.1264 

-1 
0 
1 

2.0776 
3.2207 
4.6937 

3. Form B is more difficult. For a given 8, it yields a lower 
estimated true score than the estimated true score for 
Form A. 

4. The example, repeated here, was the first step in the 
necessary calculations. Remember that we are treating 
the true-score equating table as if it were applicable to 
observed scores. 

4 70 7 r 

20 - 1 
x = 4.414 

So the reported score corresponding to 3.2207 on Form 
B is 54.414 (i.e., 50 + 4.414). 

The second step involves: 
5 90 7 r 

x .6937 
20 - 1 

x = 13.874 
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So, the reported score corresponding to 4.6937 on Form 
B is 83.874 (i.e., 70 + 13.874). 

A table can now be constructed as follows: 

FormA Score I 0 1 FormB Score 1 Reportedscore 

2.6644 

3.8426 

5.1264 

-1 

0 

1 

2.0776 
3.0 
3.2207 
4.0 
4.6937 
5.0 

50 
54.414 
70 
83.874 
90 

Finally, to find what reported score an observed score of 
4 on Form A would receive, use linear interpolation 
again, but this time with Form A scores: 

5.1264 83.874 1 r 
1.2838 1 r 4‘0 .1574 1 129,46 

L L 3.8426 54.414d 1 
X .1574 

29.46 - 1.2838 
x = 3.6119 

So a 4 on Form A would receive a reported score of 
58.0259 (i.e., 54.414 + 3.6119) or, rounded to the 
nearest integer, 58. 

Note that this provides another indication that Form 
B is more difficult than Form A. An observed score of 4 
on FormA receives a reported score of 58 while on Form 
B the same observed score receives a higher scaled score, 
70. For the same observed score, an individual should 
receive a higher scaled score on the more difficult form. 
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