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In most large-scale assessments of student achievement, several broad content domains are tested.
Because more items are needed to cover the content domains than can be presented in the limited
testing time to each individual student, multiple test forms or booklets are utilized to distribute the
items to the students. The construction of an appropriate booklet design is a complex and
challenging endeavor that has far-reaching implications for data calibration and score reporting.
This module describes the construction of booklet designs as the task of allocating items to
booklets under context-specific constraints. Several types of experimental designs are presented
that can be used as booklet designs. The theoretical properties and construction principles for each
type of design are discussed and illustrated with examples. Finally, the evaluation of booklet
designs is described and future directions for researching, teaching, and reporting on booklet
designs for large-scale assessments of student achievement are identified.
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Studies that use large-scale assessments of student
achievement are a ubiquitous component of systems

monitoring in education. Internationally, some of the most
well-known studies include the Programme for Interna-
tional Student Assessment (PISA), the Trends in Interna-
tional Mathematics and Science Study (TIMSS), and the
Progress in International Reading Literacy Study (PIRLS).
Nationally, the National Assessment of Educational Progress
(NAEP) in the United States and the School Achievement
Indicators Program (SAIP) as well as its successor, the Pan-
Canadian Assessment Program (PCAP) in Canada, supple-
ment such international studies. Moreover, many provinces
or states within a given country conduct independent large-
scale assessments of student achievement that are adminis-
tered to a representative sample or the entire population of
students at regular intervals.

The objective of these assessments is to obtain reliable in-
formation about student achievement in one or more content
domains of interest. Typically, several hundred questions are
used to test the respective content domain(s). Administer-
ing all questions to each student participating in such a study
would be too time consuming. Therefore, students are given
different test forms—booklets—each containing a number
of questions that can be sensibly answered by a student in the
available testing time. The way the questions are assigned
to the booklets is specified by a so-called booklet design.
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Because poorly chosen booklet designs can lead to substan-
tial bias in both the estimation of item parameters and abil-
ity distributions, the choice of an adequate booklet design
is highly relevant to ensure reliable test scores and their
valid interpretation. The key question that arises is, thus,
how a booklet design can be constructed that can prescribe
how to administer the items in order to obtain unbiased and
efficient parameter estimates.

Given the widespread use of large-scale assessments of stu-
dent achievement internationally and nationally, one would
expect a rich literature to exist that provides systematic and
coherent reviews of the key theories that underlie the booklet
designs of these assessments. One would also expect that the
procedural expertise that has been gathered by assessment
designers in the testing committees for these large-scale as-
sessments has already been captured in a wide variety of
practical guidelines that facilitate this complex endeavor for
other colleagues. Surprisingly, this is not the case.

Put simply, there is no “theory of booklet design” that is
documented in a satisfactory manner so that it can guide
specialists in the process of constructing a booklet design
that is optimal for a particular large-scale assessment. The
type of specialist that would need this kind of information
is most likely someone with a solid training in measurement
but without specific expertise in the construction of book-
let designs. The few existing papers explicitly addressing
booklet designs merely discuss the topic superficially (e.g.,
Beaton & Zwick, 1992; Childs & Jaciw, 2003). For large-scale
assessments of student achievement, technical reports are
published that describe the key steps taken in their develop-
ment (e.g., Allen, Donoghue, & Schoeps, 2001; Martin, Mullis,
& Kennedy, 2007; OECD, 2009; Olson, Martin, & Mullis, 2008;
see also Rupp, Vock, Harsch, & Köller, 2008). The technical
reports, however, tend to focus on the final booklet design
that was used for the assessment. They typically do not de-
scribe the myriad choices that needed to be made in the gen-
eration of such a design, the compromises that these choices
entailed, the alternative designs that could also have been
utilized, and the reasons for why they were not selected. In
short, they do not provide didactic support for the replica-
tion of such steps in novel contexts as the reports are of a
referential, not educational, nature and are oriented toward
the product and not the process of its genesis.

Similarly, textbooks on educational measurement or state-
of-the-art reference volumes such as the Handbook of Test De-
velopment (Downing & Haladyna, 2006), Educational Mea-
surement, Fourth Edition (Brennan, 2007), or the Hand-
book of Statistics, Volume 26: Psychometrics (Rao & Sin-
haray, 2007) do not cover booklet designs in detail either.
However, the implications of booklet designs are addressed
when issues such as equating and linking, model estimation,
and sampling are discussed. This shows a large disconnect
between the actual practice of booklet design and the theo-
retical importance that it has for essentially all subsequent
scaling and reporting stages of a large-scale assessment of
student achievement.

From a theoretical perspective, two scientific disciplines
deal with principles that are very useful for booklet designs.
These disciplines are combinatorics as part of mathemat-
ics (e.g., Tucker, 2006) and experimental design as part
of statistics (e.g., Giesbrecht & Gumpertz, 2004). However,
applying the principles of combinatorics and experimental
design to the context of booklet design for large-scale as-

sessments of student achievement is no trivial task as they
have historically evolved within quite different contexts with
quite different objectives. Combinatorics is concerned with
the theoretical issues of selection, arrangement, and com-
bination of objects chosen from a finite set. Mostly, even
work that is considered applied in this area remains rather
abstract from the perspective of practical booklet designs.
Within the field of experimental design, methodological re-
search is predominantly oriented toward data structures aris-
ing from traditional laboratory or field studies with observed
variables. Even though one can view large-scale assessments
as educational surveys, it is not straightforward to extend the
statistical models for experimental designs to accommodate
the specific survey structure and the associated require-
ments of latent-variable models (for a discussion see, e.g.,
Mislevy & Rupp, 2009, unpublished data). Thus, although the
number of designs and design features within the experimen-
tal design literature is extensive, it is rather challenging to
select a design that is directly utilizable as a booklet design,
given the restrictions a particular large-scale assessment
entails.

In sum, measurement specialists in expert committees
who are responsible for constructing booklet designs are
forced to learn about the process of booklet design from (a)
the technical reports of previous large-scale assessments,
(b) general descriptions of methods in combinatorics and
experimental design, or (c) explanations from colleagues
who have had experience with these designs in the past.
The present module was conceived to overcome this rather
dissatisfying lack of support for solving this complex task. It
introduces the construction of booklet designs as the task of
finding a solution for allocating a large number of questions
to a smaller number of booklets under context-specific con-
straints. The module is written in an accessible language so
that it can serve as a didactic consciousness-raising device
that illustrates key principles, potential decisions and their
resulting consequences, and provides measurement special-
ists with a toolbox and a structured way of thinking about
the problem.

Because the needs of individual assessment contexts can
induce unique constraints into the process of booklet de-
sign, this module obviously cannot provide answers for all
potential design questions. Nevertheless, besides providing
designs for typical large-scale assessment situations, it will
empower the reader to ask more targeted questions and to
devise solutions that are based on sound measurement prin-
ciples grounded in broadly accessible disciplinary expertise
rather than the artistic ability of a chosen few.

What will not be talked about in this module, however,
is the process of automatically generating unique optimal
designs with the help of search algorithms that do not
fit a particular typical design structure (see, e.g., van der
Linden, Veldkamp, & Carlson, 2004; Verschoor, 2007). Nor
does it involve an in-depth discussion of the choice of
measurement models available to the practitioner. Thus,
it will not suggest a particular measurement model as su-
perior to others, as the choice of a measurement model
is context-specific and depends on resource constraints,
available expertise, and measurement traditions as well.
Furthermore, excellent overviews of measurement models
for large-scale assessments already exist (e.g., de Ayala,
2009; de Boeck & Wilson, 2004; Embretson & Reise, 2000;
McDonald, 1999; Muthén, 2002; Pellegrino, Chudowsky, &
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Glaser, 2001; Rupp & Templin, 2008; Rupp, Templin, & Hen-
son, in press; Thissen & Wainer, 2001; von Davier, Sinharay,
Oranje, & Beaton, 2006).

The module is divided into four main sections. In the first
section, the major statistical objectives of booklet designs
for large-scale assessments of student achievement are sum-
marized as they lay the foundation for understanding why
booklet design is so critical to data analysis and reporting.
In the second section, critical constraints that influence the
structure of a booklet design within a particular application
context are reviewed. In the third section, several types of
designs that are available for the process of booklet design
are introduced. In the fourth section, indices for the eval-
uation of designs are presented. The module closes with a
brief summary, an outlook for possible research and teach-
ing directions on this topic, and a call to other measurement
experts to pursue them.

Statistical Objectives of Large-Scale
Assessments of Student Achievement
In order to be able to talk clearly and coherently about book-
let designs, a few recurring terms need to be defined at the
outset. These include item, testlet, item pool, item cluster,
and booklet. Specifically, we will refer to a single question
in an assessment as an item and a set of questions that is
connected via a common stimulus such as a text in a reading
comprehension assessment or a graph in a mathematics as-
sessment as a testlet in alignment with the mainstream mea-
surement literature (e.g., Wainer, Bradlow, & Wang, 2007).
To accelerate the readability of the module, in the follow-
ing we mostly speak of items and only differentiate between
items and testlets when it is necessary. The overall collection
of items from which a selection for the assembly of the dif-
ferent booklets has to be made will be referred to as the item
pool. We will use the term item cluster or just cluster to refer
to subsets of the item pool that are presented together. The
item clusters are mostly used as building blocks for a partic-
ular test form that a student responds to; such a test form is
referred to as a booklet. Booklets typically contain items from
one or more content domains (e.g., reading, mathematics,
and science).

In order to understand the decisions that developers of
large-scale assessments of student achievement make when
constructing a booklet design, it is useful to differentiate
between the following two statistical objectives:

1. Calibration of the item pool (i.e., estimation of item pa-
rameters).

2. Proficiency scaling of students (i.e., estimation of person
parameters).

Under both objectives the main concern is to obtain unbiased
and efficient estimates of the parameters of interest so that
the quality of the assessment and the proficiency of student
groups can be gauged reliably.

Consequently, response data need to be analyzed with
a measurement model that provides such estimates within
the context of a relatively complex design structure. The
most commonly used measurement models for large-scale
assessments of student achievement are unidimensional or
multidimensional models from item response theory (IRT)
(see, e.g., de Ayala, 2009; Embretson & Reise, 2000; van der
Linden & Hambleton, 1997; Yen & Fitzpatrick, 2006; or the
respective chapters in the technical reports of NAEP, PISA,
TIMSS, and PIRLS mentioned above). IRT models locate

item and person parameters on the same latent scale, which
allows for an interpretation of person parameters in terms
of the probability with which they can solve specific items.
The mathematical separation of item and person parameters
in IRT models holds numerous theoretical and practical ad-
vantages that are important for large-scale assessments of
student achievement. For example, they allow for the equat-
ing of scores across multiple test forms and time points, the
direct estimation of potential biases across latent or manifest
student groups, and the automatic selection of items from
item pools using computer-adaptive schemes.

A calibration of the item pool is typically of primary con-
cern in early phases of the data analysis when the psycho-
metric properties of the instruments need to be established.
Item parameters that are of major concern include difficulty,
discrimination, or pseudo-guessing parameters. In order to
investigate the functioning of the items accurately, parame-
ters should thus be estimated as precisely as possible. This
requires, in turn, that a large number of students from the
entire ability range for each subpopulation—but especially
the entire range of ability that the item pool targets most—
respond to each item because that will increase the efficiency
of the estimates.

In essence, assessment developers use item parameters to
identify those items that are not functioning as intended in
order to remove them or recommend them for revision. This
could mean, for example, that they are either too easy or
too difficult, do not discriminate enough in certain ranges of
the proficiency continuum, have guessing probabilities that
are too high, contain some distractors that do not function
as intended, or induce undue disadvantages for certain sub-
populations of students created by variables such as sex,
ethnicity, school type, or socioeconomic status.

A proficiency scaling of students is the main objective
of large-scale assessments of student achievement and typ-
ically follows the calibration of the item pool. The major
aim of large-scale assessments of student achievement lies
on group-level/aggregate reporting, not on reporting at an
individual level. Thus, booklet designs have to assure that
statistics on the level of countries, districts, schools, or class-
rooms, rather than at the level of individual students, can
be validly interpreted. For example, the measurement preci-
sion of individual proficiency estimates can be merely mod-
erate in large-scale assessments of student achievement as
long as the measurement precision of group-level statistics—
predominantly, means and mean differences—is acceptably
high.

To draw valid inferences about groups of students’ pro-
ficiencies from their person parameter estimates, these
estimates need to be similarly unbiased and as precise as
possible over the entire range of ability that the assessment
is designed for. This may be jeopardized by using an inappro-
priate booklet design. A simple problematic case would be
if booklets with varying numbers of items are systematically
used in specific subsamples that differ on secondary con-
founding variables that have a significant impact on achieve-
ment. In an international study of student achievement, this
might be the case if shorter booklets are used in some coun-
tries and longer booklets are used in others, which could be
motivated by a desire to make the assessment fit into the
typical length of school sessions across different countries
(e.g., 45 minutes vs. 60 minutes). Varying booklet length will
not only result in differences in the average efficiency of the
person parameters (because the number of data points have
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a direct impact on the efficiency of the parameters) between
the countries, but also in a possible estimation bias due to
additional factors such as fatigue or reduction in test-taking
motivation for the countries in which the longer booklets
were used. To control for these problems, booklet designs
in which booklets have an equal number of items should be
used across all potentially relevant subgroups that are known
a priori.

Design Constraints
In this section, key constraints for booklet designs are de-
scribed, which induce challenges for realizing the statistical
objectives of large-scale assessments of student achievement
that were described in the previous section. The process of
constructing a booklet design for a large-scale assessment
of student achievement is essentially the task of systemati-
cally assigning items, testlets, or clusters of items to different
booklets under a variety of practical constraints. Some of the
most common factors that constrain booklet designs are:

1. The number of items in the item pool.
2. The number of content domains that need to be tested by

the assessment.
3. The administration format of the assessment.
4. The testing time allotted for the administration of the

items.
5. The possibility of position and carryover effects.
6. The planned linking with other assessments.
7. The need to keep items secret.
This list is, by no means, exhaustive and different assess-

ment scenarios may induce additional constraints that do not
seem to fit neatly into one of these categories. Nevertheless,
the list covers the principal factors that strongly influence
most booklet designs in practice.

Size of the Item Pool

One of the most critical factors influencing the range of ap-
plicable booklet designs is the number of items in the item
pool. Of course, if the item pool was relatively small, the is-
sue of constructing a booklet design would not arise because
only one booklet or a small number of booklets could be ad-
ministered to students. In large-scale assessments of student
achievement the number of items in a pool is generally very
large, however, and can consist of several thousand items, so
that it is necessary to present students only subsets of the
complete item pool.

If items are naturally grouped into testlets, such as in
the case when multiple items are attached to a reading
comprehension passage as in PISA or in PIRLS or when
multiple items are attached to a statistical graphic as in
TIMSS, it has to be kept in mind that the smallest unit that
can be assigned to booklets is a testlet and not an item.
Generally speaking, when the number of items or testlets
becomes large, the booklet design becomes easier if items
or testlets are grouped into clusters and the clusters are
subsequently assigned to booklets.

Multiple Content Domains

The number of content domains that need to be tested by the
assessment also influences the choice of the booklet design. A
booklet design gets significantly more complicated if multiple
content domains are covered, which is the case in studies

such as PISA, TIMSS, or NAEP. If the assessment intends
to measure several content domains with different degrees
of breadth but a comparable precision across study cycles, a
suitable booklet design for any given cycle needs to allocate
the number of items per content domain proportionally in
alignment with these objectives.

Administration Format

The administration format of the assessment also plays an
important role. Theoretically, a booklet design may actually
not be necessary at all for a large-scale assessment of student
achievement because a computer-adaptive algorithm (e.g.,
Segall, 2005 or Wainer, 2000 for the one-dimensional case,
or Frey & Seitz, in press for the multidimensional case)
could be implemented that essentially creates a different
booklet in real time for each student. However, a paper-and-
pencil administration is still the most common assessment
format for large-scale studies and all assessments listed at
the beginning of the module predominantly use this format.
This creates restrictions for the booklet design that are of
a logistical nature. Specifically, a large number of booklets
results in a high workload in four stages of the assessment.

First, it is costly to format and print many different book-
lets. Second, many different booklets result in a more com-
plex test administration process. For example, it has to be
ensured that the booklet each individual student responds
to is the correct booklet. Third, the identification numbers of
different booklets need to be properly tracked while collect-
ing and scoring the response data, which can be especially
challenging for longitudinal studies. Fourth, the process of
scoring responses, recording scores, and analyzing the scores
using a common data matrix is more complex and more re-
source intensive if many different booklets are used. There-
fore, if tests are administered in a paper-and-pencil format,
a lower number of booklets will generally be desirable due to
economical reasons and in order to reduce sources of error
in the data structure at different stages of the study that
might lead to biased parameter estimates.

Testing Time

The testing time allotted for the administration of the items
also has an impact on the range of possible booklet designs.
The testing time primarily determines the number of items
that can be presented within each booklet. For example, if
an assessment is scheduled with 100 minutes pure testing
time excluding instructions and breaks, and items in the
item pool take about 4 minutes to complete, on average,
then a design can be chosen that specifies booklets with a
length of 25 items each. In PISA 2006, for example, each
booklet contained four clusters of items with each cluster
being allocated 30 minutes for a total of 120 minutes total
testing time.

Typically, available items differ in the time that is required
to answer them. In this case, clusters of items that require
approximately the same testing time can be built. These
clusters can then be used to easily assemble booklets that
need approximately the same time to be answered. If the
time that is allocated for particular clusters is insufficient
for certain student groups, however, missing data on items
at the end of the cluster would result from this design flaw,
which would lead to biased parameter estimates.
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Position Effects

One major cause of biased item parameter estimates are
position effects of clusters in different booklets as well as
the position effect of items within a cluster. Correct answers
may be given more frequently if an item is presented in
a cluster at the beginning of a booklet rather than at the
end of a booklet due to growing fatigue, reduced test-taking
motivation, or just a lack of time on the part of the student
for longer booklets. For example, in PISA 2003, the item
difficulty estimates were around .5 logits lower if the cluster
containing the respective item was presented in the first
position of a booklet compared to the last position of a booklet
(OECD, 2005); similar position effects are reported for PISA
2006 (Le, in press). For an item of average difficulty, this
means that the percentage of correct answers is about 10%
higher if it appears at the beginning of a booklet compared
to a presentation at the end of a booklet. Thus, in the first
case, the same item appears to be easier than in the latter
case although the difference in difficulty is only due to the
variation of its cluster position and not due to the cognitive
demands of the item.

If unaccounted for, such variations in item parameter es-
timates can lead to severe validity problems if the item diffi-
culties are used to give meaning to sections of a scale, which
can transform the problem from a measurement problem
to a reporting problem. For example, proficiency levels that
are determined by standard-setting procedures (e.g., Zieky
& Perie, 2006) are often characterized based on the cog-
nitive demands of items that are estimated to be at that
level. If the relative position of the items is inaccurate
due to biased item parameter estimates arising from po-
sition effects, inaccurate characterizations of the scale may
arise.

To avoid position effects, the best solution would be to
use short booklets. Unfortunately, this is not always possi-
ble. In assessment situations where relatively long testing
sessions cannot be avoided, position effects can statistically
be controlled for with a booklet design that presents all
items in all possible positions with equal frequency. Thereby,
the position effects are averaged out over the positions.1
However, if the average of the effects of the different po-
sitions on item parameter estimates does not equal zero,
strictly speaking, criterion-referenced inferences can only
be drawn with respect to the item difficulties (or response
probabilities) within the given test length of the assess-
ment, or after an adequate statistical modeling of the position
effects.

Carryover Effects

Another factor that may affect the accuracy of item param-
eter estimates is the context in which items are presented.
If, for instance, a particular algebra cluster is presented af-
ter the student has already worked on a number of similar
algebra clusters, he or she will probably find it easier than if
the same cluster is presented after working on a number of
geometry clusters or even distinct clusters from a different
content domain such as reading. We will refer to the impact
that the cluster or item context has on the response prob-
abilities of subsequent items as a carryover effect, which is
a specific type of position effect. When the concern is about
the effect of a particular cluster on the following one, this
is also referred to as a first-order carryover effect, whereas

effects across more positions are referred to as higher-order
carryover effects.

Carryover effects represent a serious problem for IRT-
based assessments because they violate the assumption of
local independence. Thus, at the stages of test construc-
tion and field testing, residual response dependencies due to
carryover effects should be rationally identified, empirically
quantified, and eliminated as far as possible. If concerns re-
main that carryover effects may occur for operational testing
stages, the impact on parameter estimates should be sta-
tistically controlled for with a booklet design that balances
combinations of clusters with regard to the characteristic
that may influence responses to subsequent clusters. Like
mentioned above for position effects, criterion-referenced
inference should then, strictly speaking, only be drawn with
respect to the item difficulties (or response probabilities)
within the specific assessment at hand, or after an adequate
psychometric modeling of the carryover effects.

Linking

Many large-scale assessments aim to report trends by com-
paring the results in the measured content domains between
assessments carried out in different years. To justify the com-
parability of the test results, a linking between assessments
(e.g., Kolen & Brennan, 2004) needs to be established. The
linking is often done by using a set of so-called anchor items
that is common between one or more assessments. If position
effects and/or carryover effects have to be expected, a book-
let design should be used that keeps the position and/or the
sequence of the items constant over assessments. Establish-
ing vertical scales with sufficiently strong linkages without
compromising construct comparability over time is a chal-
lenging endeavor, however, whose nuances are beyond the
scope of this module (see, e.g., Briggs, 2009).

Item Security

Many large-scale assessments of student achievement re-
quire that most or all operational items in the pool be kept
secret. Item security is especially critical for studies whose
results are of high political or economical relevance. In these
cases, the test results can be jeopardized if items are mem-
orized by participants and reported to persons taking the
test later. This behavior can lead to an overestimation of
students’ proficiency, especially if a small number of items
is presented in a single booklet. To reduce the feasibility of
memorizing items, many items can be distributed to a rela-
tively large number of booklets where they are presented in
different clusters and different orders.

Booklet Design with the Aid of Experimental Designs
In this section, the terminology of experimental design will
be adapted to the specific context of booklet design, and a
variety of experimental designs that are suitable for booklet
design will be reviewed. Common experimental designs like
completely randomized designs are not discussed here as
they are mostly not suitable as booklet designs. The follow-
ing list of designs is by no means exhaustive as there are
many basic designs and design modifications that may be
suitable in a particular situation. In this sense, constructing
a booklet design will be described based on key principles
that go into that process rather than the mere selection of
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an appropriate existing design. The latter would be an un-
due oversimplification of the complexities of the real-life
scenarios that designers in large-scale assessments of stu-
dent achievement are faced with.

The experimental designs that will be reviewed include
complete permutation designs (CPDs), balanced incomplete
block designs (BIBDs)—with a focus on the special case of
Youden squares designs (YSDs)—and repeated treatment
designs (RTDs). For each design that is described, an example
design table is provided, relevant practical uses of the design
are outlined, the principles of construction are explained,
and the advantages and disadvantages of the design as a
booklet design are discussed.

The literature on experimental design is historically well
established and many modern textbooks on this topic (e.g.,
Giesbrecht & Gumpertz, 2004; Kuehl, 2000) continue to cite
traditional sources such as Cochran and Cox (1957) or Kirk
(1968). The foundations of a theory of experimental design
were laid by Ronald A. Fisher at the beginning of the last cen-
tury. Experimental design was originally mainly concerned
with problems in agriculture, following the primary objec-
tives of (a) the reduction of experimental error by means
of local control of experimental conditions, (b) the precise
estimation of experimental error by means of replication,
and (c) the valid interpretation of the experimental error
estimate by means of randomization. Experimental designs
are well suited to be used as booklet designs mainly due to
their capability to control for unwanted sources of variation
that impact item and person parameter estimates and to
formalize the efficiency of their estimation.

Basic Terminology

The basic elements in an experiment are known as experi-
mental units, the measurements that are taken on the exper-
imental units are known as the outcomes of interest, and the
interventions that are assigned to the experimental units are
known as treatments. The term experimental unit denotes
a single object or a group of objects to which a treatment is
applied in a single trial of an experiment. When the same
treatment is applied to multiple experimental units, one
speaks of replication.

In order to properly estimate treatment effects on the out-
comes of interest, it is usually necessary to randomize the
assignment of treatments to experimental units. Random-
ization is applied to ensure that the systematic effects of all
potential confounding factors on the outcomes are identical,
on average, for the different treatment levels so that differ-
ences in the outcomes of interest can be solely attributed to
the variation in the treatments. Quite simply, then, the plan
by which the treatments are assigned to the experimental
units, given all of the above considerations, is known as the
experimental design.

A booklet design can be seen as a special case of an ex-
perimental design. Within a booklet design, items, testlets,
or clusters are the treatments that are assigned to booklets
in a systematic way; most frequently, items and testlets are
assigned to clusters that are, in turn, assigned to booklets.
Thus, in the following sections, we refer to clusters as the
treatments in booklet design and only differentiate between
items, testlets, and clusters where it is necessary. The fre-
quency with which a cluster is repeated within the complete
set of booklets is its replication. The students or groups of

students to whom the booklets are given are the experimen-
tal units. Finally, the responses given to the items, testlets,
or clusters are the outcomes of interest.

Complete Permutation Designs (CPDs)

If unwanted effects of one or more confounding variables on
parameter estimates are to be avoided in an experimental de-
sign context, one can completely control for the confounding
variables by means of complete permutation of treatments.
As stated earlier, prominent sources of unwanted variation
that should be controlled for in large-scale assessments of
student achievement stem from the use of multiple booklets,
from the existence of position effects, and from the existence
of carryover effects. In CPDs, the order of the treatments is
permuted, meaning that every order of clusters appears ex-
actly once in the set of booklets. A simple example with three
clusters, represented by the numbers 1, 2, and 3, with two
positions per booklet is shown in Table 1. There are three
possible ways of selecting two clusters out of the three (1
and 2, 1 and 3, 2 and 3) as well as two ways to arrange the
two selected clusters across the two positions. Thus, a total
of six different booklets is necessary to cover all potential
cluster pairings and permutations. As a result, every cluster
of items appears exactly four times, and every order of the
clusters appears exactly once. Thus, variations that may be
introduced by using a smaller number of booklets as well as
by position and carryover effects between the clusters are
completely controlled for.

The construction of booklet designs by complete permuta-
tion is simple but only practically feasible for small numbers
of treatments (i.e., items, testlets, or clusters). Otherwise,
such a design would result in a prohibitively large numbers
of booklets. Mathematically, with t treatments and k posi-
tions per booklet, there are a total of

( t
k

)
ways in which the

treatments could be distributed across the positions. If all
possible positions have to be permuted within the designs to
further control for position effects, the number of booklets b
grows substantially to b = ( t

k

) · k!.
For example, consider the PISA 2006 study where 13 clus-

ters and four positions in each booklet were used. In this
case, one would have needed

(
13
4

)
= 715 booklets to

cover all possible combinations of clusters in booklets and
715 · 4! = 715 · 12 = 17,160 booklets to completely control
for position effects using a CPD. As is the case whenever
clusters are assigned to positions using any design, position
effects in a CPD can only be controlled for between clus-
ters and not within clusters, because item order within a
cluster is not affected by the permutation of the clusters
themselves.

Table 1. Booklet Design Based on a
Complete Permutation Design

Booklet

Position 1 2 3 4 5 6

1 1 2 1 2 3 3
2 2 3 3 1 2 1

Note. The design is based on three clusters, six booklets, and
two positions per booklet.
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Summing up, booklet designs based on complete permuta-
tions have the advantage that they can be constructed easily
and that they are capable of controlling for unwanted effects
of confounding variables on parameter estimates. The strik-
ing disadvantage of those designs, making them infeasible
for nearly every large-scale assessment, is that they are only
applicable for very small numbers of items, testlets, or clus-
ters. As a result, alternative experimental designs need to be
considered for large-scale assessments of student achieve-
ment. Specifically, incomplete designs with blocking factors
are better suited to be used as booklet designs because they
can also control for different sources of unwanted variation
but need relatively few booklets. These designs are described
in the following sections.

Incomplete Block Designs (ICBDs)

Blocking is one of the most fundamental techniques in exper-
imental design. The basic idea of blocking lies in the removal
of unwanted variability in the outcomes of interest. This is
done by dividing the collection of experimental units into
homogeneous subsets, which are the blocks, and randomly
applying the treatments to these homogenous subsets. This
procedure removes the effect of extraneous sources of vari-
ability incorporated into the blocking factor on the parameter
estimates of interest.

For booklet design, this implies that factors that may have
an unwanted effect on item and person parameter estimates
should be included as blocking factors. The two most common
effects that researchers would like to eliminate in large-scale
assessments are biases due to booklet and position effects.
The booklet number and the position number can be viewed
as blocking factors because booklets are connected physical
units and generic position numbers are naturally identical
across booklets. That is, the random assignment of items,
testlets, or clusters from an item pool to different positions
in different booklets is akin to the random assignment of
treatments to experimental units within a two-way blocking
structure with booklet and position number as the blocking
factors. In complete block designs, every block accommo-
dates the full set of treatments. In terms of booklet design
this means that every booklet contains all clusters. Theo-
retically, latin square designs (e.g., Giesbrecht & Gumpertz,
2004)—as special cases of complete block designs—are a
good solution to control for booklet and position effects.
These are designs with multiple blocking factors such that
the number of levels of each factor and the number of treat-
ments are the same. For large-scale assessments, this would
imply that the same number of booklets, booklet positions,
and clusters need to be used.

However, booklet designs in large-scale assessments of
student achievement are typically used with the objective of
not presenting all clusters to all respondents in the first place.
Hence, ICBDs are frequently used as booklet designs. Block
designs are called incomplete if the number of treatments
per block (i.e., clusters per booklet) is smaller than the
overall number of treatments. These designs are well suited
as booklet designs because even large numbers of clusters
can be assigned to a booklet given a restricted number of
positions.

There is a large variety of ICBDs. In the next sections,
three types of designs that can be used well as booklet designs
are introduced. First, BIBDs are introduced, then YSDs are

Table 2. Booklet Design Based on a
Balanced Incomplete Block Design

Booklet

Position 1 2 3 4 5 6 7

1 1 2 3 4 1 2 1
2 2 3 4 5 5 6 3
3 4 5 6 7 6 7 7

Note. The design is based on t = 7 clusters, b = 7 booklets, r
= 3 occurrences of each cluster, k = 3 positions within each
booklet, and � = 1 occurrences of each cluster pair.

described, which are a special type of BIBDs and, finally,
RTDs are presented.

Balanced incomplete block designs (BIBDs). BIBDs are a
very large and, possibly, the most important class of ICBDs.
In terms of booklet designs, a BIBD is a specific type of an
incomplete design that satisfies the following conditions:

1. Every cluster (t) occurs at most once in a booklet (b).
2. Every cluster appears equally often (r) across all booklets.
3. Every booklet is of identical length, containing the same

number of clusters (k).
4. Every pair of clusters occurs together in booklets with

equal frequency (λ).
The constants t, b, r, k, and λ are called the parameters

of the design and characterize the ICBD. For example, the
design shown in Table 2 (t = 7, b = 7, r = 3, k = 3, λ = 1)
incorporates seven clusters in three positions across seven
booklets with each cluster appearing three times and each
pair of clusters appearing together only once.

The design depicted in Table 2 seems practically well
suited as a booklet design. The number of booklets is not too
large, they are of equal length, and no cluster appears more
than once within a single booklet. Furthermore, because all
clusters appear with equal frequency in the set of booklets,
it is likely that item parameters will be estimated with sim-
ilar efficiency if all booklets are administered to an equal
number of students. An easy way to present all booklets to an
equal number of students lies in spiraling them across the
students, both within and across classrooms. Starting with
a first classroom of j students, student 1 is given booklet 1,
student 2 is given booklet 2, and so on. If the classroom size
j is larger than the number of booklets b, student j = b +
1 is presented booklet 1 again until a booklet is assigned to
every student in the classroom. In the next classroom, the
sequence of booklets is continued. If, for example, student j
of the first classroom was given booklet 4, then booklet 5 is
given to the first student of the next classroom. Using this
simple procedure every booklet is randomly assigned to an
(nearly) equal number of students.

The fact that in the design of Table 2 every cluster ap-
pears exactly once in conjunction with any other cluster also
leads to a homogenous linking between the items. Generally,
a booklet design that incorporates just enough clusters to
ensure a reliable linkage while maintaining adequate con-
tent coverage facilitates the efficient estimation of item and
person parameters (see, e.g., the 2007 special issue of the
Journal of Educational Measurement). Despite these de-
sirable features, a limitation of BIBDs is also apparent from
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Table 2. The design does not control for position effects be-
cause only one blocking factor is used. For example, the first
cluster is always presented in the first position of a booklet
and the seventh cluster is always presented at the last posi-
tion. Obviously, clusters and the position in the booklet are
confounded. In a large-scale assessment of student achieve-
ment, this may be problematic because the percentage of
correct answers tends to decrease with the positions, result-
ing in biased item parameter estimates. In the example in
Table 2, the estimated item difficulties for the items entailed
in cluster 10, which is only presented in the last position, will
be too high (meaning the items appear too difficult).

Furthermore, not all design parameter combinations are
possible for BIBDs. Even if the parameters of a possible BIBD
are known, the construction of BIBDs is often not a trivial task
and still represents an object of statistical research. Simple
BIBD construction techniques can be found in Giesbrecht
and Gumpertz (2004). However, because the construction of
BIBDs quickly gets very complicated if the number of clus-
ters is more than a few, it is much more purposeful to use
designs given by means of tables in standard textbooks of
experimental (Cochran & Cox, 1957) and combinatorial de-
sign (Colbourn & Dinitz, 1996; Stinson, 2004). These designs
can readily be utilized as booklet designs. Doing so, clusters
should be randomly assigned to the treatment numbers.

Taken together, BIBDs are well suited to be used as book-
let designs for a variety of assessment situations, although
the general definition of BIBDs may comprise some disad-
vantages for specific assessment situations where position
effects have to be expected. One striking advantage of BIBDs
is their efficiency compared to designs based on complete
permutation of the item order. For the case with seven clus-
ters and three positions used as an example in Table 2,
complete permutation of the clusters across the booklets
with a CPD would produce 35 booklets because there are 35
ways in which three clusters can be selected out of seven.
This would be practically infeasible to implement, whereas
a BIBD with seven booklets can be implemented. Further-
more, because every cluster has equal replications within a
BIBD, the resulting item parameters are likely to be esti-
mated with similar efficiency. Another advantage stems from
the fact that the frequency of each pairing of two clusters
is held constant in the design leading to a robust linkage
across booklets. The disadvantages of BIBDs are that they
only exist for some combinations of the design parameters,
and that they do not necessarily control for position and
carryover effects. To control for position effects, a second
blocking factor has to be incorporated, ideally without the
restrictions that a latin square design imposes. This can be
achieved with YSDs, which are the focus of the next section.

Youden square designs (YSDs). YSDs were introduced
by Youden (1937, 1940) to provide efficient experimen-
tal designs for biological research. A detailed description of
Youden’s early greenhouse experiments that led to the de-
velopment of YSDs can be found in Preece (1990). YSDs are
a special case of BIBDs that incorporate the four conditions
of a BIBD but impose the additional condition that every
cluster has to appear in each position with equal frequency.
This additional condition implies that the number of book-
lets equals the number of clusters (i.e., b = t), and that the
frequency with which clusters appear in the set of booklets
equals the number of positions in the booklets (i.e., r = k).

Table 3. Booklet Design Based on a
Youden Square Design

Booklet

Position 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7
2 2 3 4 5 6 7 1
3 4 5 6 7 1 2 3

Note. The design is based on t = 7 clusters, b = 7
booklets, r = 3 occurrences of each cluster, k = 3 positions
within each booklet, and � = 1 occurrence of each cluster pair.

Because every cluster appears in every position with equal
frequency, position effects are controlled for.

YSDs are frequently used as booklet designs in large-scale
assessments of student achievement such as PISA 2003 and
PISA 2006 as well as NAEP. While NAEP uses YSDs to con-
struct focused booklets with items from only one subject
domain, in PISA a YSD is used to construct a design that
mixes subject domains across booklets. Table 3 shows a YSD
with t = 7, b = 7, r = 3, k = 3, and λ = 1. Like in the BIBD in
Table 2, the seven clusters are distributed in a way that each
cluster appears three times and each pair of clusters appears
together exactly once. But in distinction to the design in Ta-
ble 2, the design in Table 3 has the additional feature that
each cluster appears exactly once at each position. For ex-
ample, cluster one is presented at the first position in booklet
one, at the second position in booklet seven, and at the last
position in booklet five.

Obviously, the YSD presented in Table 3 looks rectangular
rather than square, as the name implies. This is due solely to
the way in which the design is presented. Originally, the name
YSD referred to another form of representation, namely as a
t×t matrix with each cell being either empty or containing
the position for the cluster in the particular booklet. We
use the rectangular representation here, because it is more
compact and mimics the representation of the other designs
discussed previously.

Because in YSDs each cluster appears in each position
within a booklet exactly once, position effects are controlled
for. Despite this advantage compared to a BIBD, a YSD can
still not control for carryover effects. Moreover, the advanta-
geous properties of YSDs vis-à-vis alternative designs come
at a hefty price of restrictiveness as YSDs only exist for
a few combinations of the design parameters. One way to
circumvent the availability of a YSD for a particular ideal
assessment design scenario is, of course, to choose a YSD
design beforehand and arrange the item pool and the assess-
ment characteristics according to the design. When this is
not possible, some items from the pool may have to be ex-
cluded from consideration in designing the booklets or newly
constructed items may have to be added to fill in gaps in the
YSD that is chosen after the item pool was developed.

The construction of YSDs is more difficult than the con-
struction of BIBDs. Therefore, for YSDs it is even more nec-
essary than for BIBDs to use readymade designs provided
in textbooks. For example, YSDs with t ≤ 91 are shown in
Cochran and Cox (1957). These designs are very useful for
the common case where clusters are used to construct book-
lets. In cases where it seems desirable to assign single items
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to booklets (Frey, Carstensen, & Hartig, 2006), larger YSDs
are needed. To our knowledge, unfortunately, no complete
table of YSDs with t > 91 exists.2

Summing up, YSDs have the same advantages when used
as booklet designs as BIBDs and are thus not repeated here.
Furthermore, they not only control for one but for two sources
of unwanted variation. This feature can be utilized to control
for booklet and position effects. The disadvantages of YSDs
are that they only exist for certain parameter combinations,
and that they do not control for bias introduced by carryover
effects. If carryover effects have to be assumed, RTDs that
are described in the following section may be used as booklet
designs.

Repeated treatment designs (RTDs). Experimental design
distinguishes between strongly balanced and minimally bal-
anced RTDs. In a strongly balanced RTD every treatment
follows every other treatment—including itself—an equal
number of times. Because clusters cannot appear in book-
lets multiple times, a strongly balanced RTD is not applicable
for the context of booklet design. In a minimally balanced
RTD, this structural characteristic is relaxed and every treat-
ment only follows every other treatment an equal number of
times, which makes them suitable as booklet designs. RTDs
with an equal number of clusters, booklets, and positions
are especially useful as booklet designs because they can
be constructed easily. The characteristics of an RTD for six
clusters, six booklets, and six positions that controls for po-
sition effects as well as for first-order carryover effects are
demonstrated by the example given in Table 4.

Because in the example every cluster appears in every
position exactly once, position effects are controlled for.
Furthermore, every cluster is followed by every other clus-
ter exactly once so that first-order carryover effects are also
controlled for. However, higher-order carryover effects of in-
dividual clusters on clusters presented later on in the booklet
are not controlled for by an RTD, similar to a YSD or a gen-
eral BIBD. It is obvious that RTDs capable of controlling for
higher-order carryover effects would be much more complex
so that they mostly cannot be used as booklet designs. Be-
cause all clusters are presented within all booklets, RTDs
share the technical feature with BIBDs and YSDs that every
combination of two clusters appears with equal frequency
in the set of booklets (e.g., six times in the example in
Table 4).

Table 4. Booklet Design Based on a
Repeated Treatment Design

Booklet

Position 1 2 3 4 5 6

1 1 2 3 4 5 6
2 6 1 2 3 4 5
3 2 3 4 5 6 1
4 5 6 1 2 3 4
5 3 4 5 6 1 2
6 4 5 6 1 2 3

Note. The design is based on t = 6 clusters, b = 6 booklets, r
= 6 occurrences of each cluster, k = 6 positions within each
booklet, and � = 6 occurrences of each cluster pair.

An important difference between RTDs and the designs
described in the previous sections is that in RTDs every clus-
ter appears in every booklet. This means that RTDs cannot
be used in situations where the testing time for all items
exceeds the available testing time. They can, however, be of
interest if item order or carryover effects are to be controlled
for, or if these effects are to be examined more closely. For
example, several studies on item position effects in question-
naires made use of these designs (Hamilton & Shuminsky,
1990; Hartig, Hölzel, & Moosbrugger, 2007; Knowles, 1988;
Knowles & Byers, 1996). Because the number of booklets
equals the number of item clusters, these designs can only
be used if the number of clusters is reasonably small.

The construction of RTDs is relatively easy. In the follow-
ing, an algorithm to construct RTDs with an even number of
treatments is described; a slightly more complex algorithm
for odd numbers of treatments can be found in Giesbrecht
and Gumpertz (2004). First, a generating column is gen-
erated by writing down the symbols 1, 2, 3, . . . , t/2 in the
odd-numbered positions and t, t – 1, . . . , t/2 + 1 in the even-
numbered positions. The generating column serves as the
first column of the design from which the other columns
are cyclically generated. This means by going right, for each
column, the value is increased by 1; if t is reached, the next
column will get a 1. The algorithm for the example above is
depicted in Table 5. The six columns at the right-hand side
of the table constitute the final design.

Taken together, RTDs are well suited as booklet designs
in situations with small numbers of clusters, if carryover ef-
fects have to be expected. RTDs have the advantage that they
control for two sources of variation and can thus be used to
avoid unwanted impact of booklet and position effects on
the parameter estimates of interest. Furthermore, they con-
trol for first-order carryover effects, and can be constructed
relatively easily and without the use of computer programs.
The main disadvantage of RTDs lies in the fact that every
cluster is presented in every booklet and that they need as
many booklets as clusters. This is the reason why RTDs are
typically not applied in large-scale assessments of student
achievement where large item pools are used.

Evaluation of Booklet Designs
When a booklet design has to be constructed for a large-scale
assessment of student achievement there are usually several
candidate designs that seem feasible. In most cases, it is

Table 5. Construction of a Repeated
Treatment Design

Column
Generating
Column 1 2 3 4 5 6

1 1 2 3 4 5 6
6 6 1 2 3 4 5
2 2 3 4 5 6 1
5 5 6 1 2 3 4
3 3 4 5 6 1 2
4 4 5 6 1 2 3

Note. The design is based on an even number of t = 6 clusters.
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quite difficult to decide which design has the most desirable
attributes and should be used as the final booklet design as
each design entails compromises. Thus, a reasonable strategy
is to base the decision for or against a design on a mixture of
information based on qualitative and quantitative criteria,
taking the special characteristics of the assessment situation
into account.

Information based on qualitative criteria can be obtained
by answering questions like the following for any of the can-
didate designs. Even if most of the questions appear rather
trivial perhaps, setting up a catalog and systematically an-
swering them for each candidate design makes it easier to
avoid overlooking an important characteristic.

1. Does the design meet all the restrictions of the assessment
situation?

• E.g., is the design applicable from a practical point
of view? For example, is the testing time that is
allocated to a booklet by the design aligned with the
actual available testing time?

• E.g., does the design control for possible sources
of unwanted variation? For example, does the de-
sign control for position and/or carryover effects of a
specified order?

2. Are all factors that the design controls for sources of
unwanted variation? For example, if carryover effects will
not be a problem, a design that controls for position effects
is not needed.

If any of these questions can be answered with “no”, the corre-
sponding design is likely to be problematic and the question
of whether other designs are possible must be seriously con-
sidered.

Additionally, information based on quantitative criteria
can be used to evaluate booklet designs. In most cases, the
variance-covariance matrices of the design matrix and the
D-optimality index are particularly useful. The variance-
covariance matrix of the design matrix shows the degree of
association between the factors incorporated into the design.
Within booklet designs, these factors are booklet, position,
and cluster. To calculate the variance-covariance matrix, the
design has to be represented as a design matrix, which is a
different representation of the design compared to the tables
that have been used so far in this module. Specifically, the de-
sign matrix has to contain a separate column for each factor,
which results in every cell of the design being represented
by a row in the design matrix.

To illustrate, Table 6 shows a small YSD with t = 3, b =
3, k = 2, r = 2, λ = 1, in the format that was used for all
designs in this module, while Table 7 shows the same design
in the design matrix format that is required to estimate the
variance-covariance matrix.

Based on the representation in Table 7, the variance-
covariance matrix can easily be calculated with standard
statistical software programs. The variance-covariance for
the YSD in Tables 6 and 7 is shown in Table 8. Rearranging
designs can consume a lot of time and may result in mistakes
if the designs have a lot of cells. To avoid this, the computer
program mentioned in Footnote 2 can be used to calculate
variance-covariance matrices for designs constructed with
the computer program itself or for designs that were read in
from external ASCII files.

As is typical for such matrices, the elements on the main
diagonal of the variance-covariance matrix are the variances
of the three design factors and the off-diagonal elements are

Table 6. Booklet Design Based on a
Youden Square Design in Typical
Format

Booklet

Position 1 2 3

1 1 2 3
2 2 3 1

Note. The design is based on t = 3 clusters, b = 3 booklets,
r = 2 occurrences of each cluster, k = 2 positions within each
booklet, and � = 1 occurrences of each cluster pair.

Table 7. Booklet Design Based on a
Youden Square Design as a Design
Matrix

Booklet Position Cluster

1 1 1
1 2 2
2 1 2
2 2 3
3 1 3
3 2 1

Note. The design is based on t = 3 clusters, b = 3 booklets,
r = 2 occurrences of each cluster, k = 2 positions within each
booklet, and � = 1 occurrences of each cluster pair.

Table 8. Variance-Covariance Matrix
for a Youden Square Design

Booklet Position Cluster

Booklet .80 .00 .20
Position .00 .30 .00
Cluster .20 .00 .80

Note. The analyses refer to a design with t = 3 clusters, b =
3 booklets, r = 2 occurrences of each cluster, k = 2 positions
within each booklet, and � = 1 occurrences of each cluster pair.

their covariances. In this example, the variance of the factors
booklet and cluster is higher than the variance of the factor
position because the former have three levels whereas the
latter has only two levels. In other words, one can learn more
from this design about the effects of booklets and clusters on
item and person parameter estimates than about the effects
of cluster position on these estimates.

Which values for the variances and the covariances are
desirable cannot be stated generally and has to be deter-
mined anew for every study. For example, if the objective
of a large-scale assessment of student achievement is to an-
alyze the effects of using various numbers of booklets on
parameter estimates, then the variance of the booklet factor
should be high. This can be achieved by incorporating many
different booklets, because the variance of a factor rises with
the number of its levels.
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In practice, however, large-scale assessments of student
achievement are generally not used to examine the effects of
design factors on parameter estimates, but rather to control
for unwanted sources of variability. Thus, for most large-
scale assessments, the covariances are more relevant for
the evaluation of booklet designs than the variances. If the
covariance between two factors is 0, these factors are said
to be orthogonal, meaning they are statistically unrelated by
design. In this case, no bias can result from an interaction
of the two factors. If the covariance is different from 0,
the factors are said to be confounded, meaning they are
statistically related by design. The variance introduced by
confounded factors cannot be separated in the statistical
analysis later on and may lead to bias in parameter estimates.
Often, confounded factors are problematic but they do not
necessarily have to be. For every assessment situation, the
question of whether a calculated covariance is problematic
or not must be thoroughly thought over.

A situation where a covariance between the factors po-
sition and cluster is not wanted is the case when position
effects have to be expected and one objective of the study is
the estimation of item parameters. The design shown in Ta-
ble 6—like all YSDs—is unproblematic in this regard, with a
covariance of 0 between cluster and position. The covariance
of .20 between booklet and cluster is due to the clusters not
being evenly distributed across the booklets. An even distri-
bution is, in fact, impossible in the example because there
are more clusters than positions in a booklet. Because the
parameter estimates are calculated on the basis of data that
are aggregated across booklets in large-scale assessments of
student achievement, the confounding of the factors cluster
and booklet does not lead to bias in parameter estimates and
can therefore be seen as unproblematic. Obviously, when the
covariance between booklet and cluster is different to 0, pa-
rameter estimates should not be obtained from data drawn
from a subset of the booklets. In this case, biased estimates
would result.

One way to compare different variance-covariance matri-
ces for a given assessment scenario is to use a particular
optimality criterion. For applications of booklet designs in
large-scale assessments, the D-optimality index (e.g., Atkin-
son & Donev, 1992; van der Linden, 2005) is the most im-
portant optimality criterion. The D-optimality index is an
aggregated measure of the variance-covariance matrix and
is calculated by taking the determinant of the design ma-
trix multiplied by the inverse of the design matrix. Thus,
the value of the D-optimality index will become large if the
values on the main diagonal of the design matrix are large
relative to the elements off the main diagonal. The higher
the values of the D-optimality index, the more independent
the factors of the design are.

In summary, booklet designs can be evaluated and com-
pared with each other by a combination of qualitative and
quantitative criteria. No standard procedure or standard-
ized cut-off values for variances or covariances are avail-
able, as assessment objectives and design constraints differ
widely between different large-scale assessments of student
achievement. Hence, we advise to ask and answer critical
qualitative questions about the desired classes of inferences
about students and assessment characteristics in a first step
to check the extent to which any candidate design meets the
requirements of the current assessment situation. We further
propose to use quantitative criteria such as the variance-

covariance matrices and the D-optimality indices for
different candidate designs to examine their relative suit-
ability in a second step.

Conclusion
This module has shown that the construction of a booklet
design for a large-scale assessment of student achievement
is a complex and nontrivial task. Constructing a booklet de-
sign is fundamentally the task of finding a design structure
that specifies the assignment of clusters to booklets in order
to meet the objectives of a study, given a set of constraints
posed by the assessment situation. The general objective
of large-scale assessments of student achievement lies in
validly reporting student proficiencies, mostly at the level of
groups. This general objective can only be reached if multiple
statistical objectives are fulfilled. For most assessment situ-
ations, the statistical objectives are to obtain unbiased and
efficient item and/or person parameter estimates, requiring
that unwanted sources of variation of these parameter esti-
mates, such as variation due to position and carryover effects,
are controlled for as much as possible.

This can be achieved primarily in the early phases of test
construction and field testing by extensive training of item
writers that leads to well-targeted items with minimal de-
grees of nuisance dependency, by keeping testing sessions
reasonably short, and by avoiding the creation of item clus-
ters and cluster arrangements that change response pro-
cesses in an unwanted manner. After the item pool has been
developed, a suitable booklet design needs to be constructed
to statistically control for possible remaining source of un-
wanted variation as much as possible. Finally, the booklets
need to be presented to a sufficiently large, random, and
representative sample of the target population of students.

Due to the complexity and interdependency of these tasks,
no straightforward general design algorithm can be utilized
for the construction of booklet designs. Because large-scale
assessments of student achievement can differ widely with
regard to their substantive and statistical objectives as well
as their practical implementation constraints, it is typically
necessary to construct a booklet design anew for each study.
To reduce the effort associated with booklet design con-
struction, systematically constructed designs from the com-
binatorics and experimental design literature can be used to
alleviate the burden for the assessment developers. In this
module, we reviewed several key design types that fit this
mold, which included CPDs, BIBDs, YSDs, and RTDs. Among
these designs, BIBDs and YSDs in particular are attractive
design types that can and have been used successfully in
large-scale assessments of student achievement.

Although all of these designs statistically control for one or
more unwanted sources of variation, it is important to keep
in mind that unwanted effects on the parameter estimates of
interest are strictly speaking only completely “removed” if the
mean of the effects equals 0 across the levels of the respective
factor (e.g., across the positions in a set of booklets). If this
is not the case, the bias in item parameter estimates has to
be acknowledged when inferences are drawn from the test
scores. However, in most cases, the bias caused by unwanted
effects on the parameter estimates of interest in balanced
designs is rather small compared to the bias resulting from
unbalanced designs.
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One methodological lesson that can be learned from all
of this is that it is worthwhile to align the development of
the item pool not merely with a general table of specification
for the assessment but also with the booklet design that will
be subsequently implemented to collect the data. Because
all decisions about students will be made on the basis of
the collected data, which critically depend on the quality
of the booklet design, developing suitable booklet designs
should be of primary concern to assessment developers. More
important, latent variable models, including IRT models,
mostly cannot make up for weaknesses in the booklet design
once the data have been collected.

Once suitable designs have been constructed and imple-
mented for a particular study, it may seem to be relatively
easy to modify one or more existing candidate designs to ac-
commodate the objectives of a particular assessment. These
modifications have to be made with caution, however, be-
cause they will distort the statistical properties of the orig-
inal design to some degree and minor changes may lead to
rather large unwanted statistical problems. Thus, the extent
to which changes to the design structure result in severe
problems or can be tolerated in an assessment situation
should be evaluated thoroughly. This can be done with the
combination of qualitative and quantitative criteria that are
proposed in this module for the evaluation and comparison
of different booklet designs. Both types of criteria supply
complementary information about whether the designs un-
der consideration introduce unwanted variability in param-
eter estimates and whether they are generally well suited as
booklet designs for the current assessment situation.

It is also worth noting that a majority of booklet designs
that are used in current large-scale assessments of student
achievement assign clusters, rather than items or testlets,
to positions in booklets even though the latter two are se-
lected from the item pool to build the clusters. Although
this approach allows quite simple booklet designs with small
numbers of booklets to be used, it is not completely unprob-
lematic. Most critically, a suitable booklet design can only
ensure that sources of unwanted variation are controlled
for between clusters but never within clusters as the clus-
ter construction happens before the cluster assignment. For
example, position effects or carryover effects are not con-
trolled for within clusters because the order of items within
a cluster is the same for all booklets unless the order is specif-
ically varied. An alternative to the common practice of using
clusters would be to regard items or testlets as the smallest
possible units and balance their position across booklets. In
a simulation study, Frey et al. (2006) showed that assigning
single items to booklets instead of clusters results in small
but stable advantages regarding bias and efficiency of both
item and person parameter estimates. However, assigning
items to booklets instead of clusters results in large numbers
of booklets, which has several practical drawbacks. As stated
earlier in the module, constructing and formatting these
booklets consumes a lot of resources and can produce errors
if not done by a computer. More critically, a large number of
booklets can produce problems regarding the validity of the
inferences that are drawn from the test scores. Consider the
case where one wants to compare the mean proficiency lev-
els of school classes with each other. In that case, one faces
challenges if the number of booklets used is larger than the
number of students in a classroom, because in some class-
rooms no representative sample of items is presented to the

students. For example, if a lot of items from one subdomain
(e.g., linear algebra) are given to the students of one class-
room whereas the students of another classroom get only a
few or no items measuring this subdomain, the validity of the
interpretation of the difference between the means of the two
classrooms as differences in the major content domain (e.g.,
mathematics) are likely to be problematic as the construct
is represented differently for these student groups. To avoid
these problems, the number of booklets in the design should
be smaller than the number of students in the smallest group
for which results will be computed and reported. Further-
more, the booklets should be randomly assigned to students,
which can easily be accomplished by spiraling them across
the students within classrooms.

One related research question that has not yet been satis-
factorily answered in the literature concerns the question of
which kinds of booklet design can deal adequately with item
pools that measure more than one dimension and lead to a
reliable scaling of the response data with multidimensional
IRT models. The designs presented in this module can only
control for up to two sources of unwanted variation, namely
booklet and position. In the case of a multidimensional item
pool, dimension can be viewed as an additional blocking
factor. If dimension is not balanced by means of the book-
let design, the efficiency of the variances and covariances
of person parameters is likely to vary between dimensions
or between pairs of dimensions, respectively. Unfortunately,
balanced designs with three or more blocking factors have
not been used as booklet designs in practice so far even
though they have been presented in the combinatorics and
experimental design literature.

Finally, we want to end the module with a call to action
for assessment developers, measurement specialists, and re-
lated professionals. It is critical that the booklet designs
that have been used in large-scale assessments are more
frequently discussed in the educational measurement liter-
ature from theoretical, applied, and didactic perspectives.
More transparency about the factors that have guided a par-
ticular booklet design is clearly needed to lift the construc-
tion of booklet design from the realm of diffuse expertise
possessed by a selected few to the realm of shared exper-
tise possessed by a discipline. Booklet designs should also
have a prominent place in graduate-level training in edu-
cational measurement programs, where they are currently
frequently neglected. This requires that textbooks or hand-
books of measurement devote more space to the structure,
properties, construction, and implementation of these de-
signs. Future research needs to investigate how the set of
existing booklet designs can be extended to accommodate
the real-life complexities of existing item pools and should
provide more hands-on tools for assessment developers that
aid them in the development of such designs.

Self-Test
1. Explain the primary reason for utilizing booklet designs

in large-scale assessments of student achievement.
2. What are two primary statistical objectives that often

guide the construction of a booklet design? How are they
related to the validity of inferences that are drawn from
the test scores?

3. Explain why complete permutation designs are of limited
practical use for large-scale assessments.
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4. What is the definition of position effects? What are possible
reasons for position effects in large-scale assessments of
student achievement?

5. What are carryover effects? Give an example for a possible
occurrence of carryover effects in large-scale assessments
of student achievement.

6. Why is it necessary to control for position effects and
carryover effects?

7. Which booklet designs statistically control for position and
first-order carryover effects? Why is this the case?

8. Construct a feasible booklet design for the assessment
situation described below. Note that you will need a text-
book on experimental design like Cochran and Cox (1957)
or Giesbrecht and Gumpertz (2004) to inspect tables of
candidate designs. The statistical objectives of the as-
sessment are to estimate item and person parameters.
The study aims at reporting at the classroom level and
at higher levels. The assessment is constrained by the
following requirements:

(a) The item pool contains 130 items measuring math-
ematical literacy.

(b) Each item takes approximately 2 minutes to com-
plete.

(c) The available testing time is 90 minutes.
(d) The available sample size will be roughly N = 5,000

students of grade 8.
9. What is a disadvantage of Youden square designs?

10. Construct a minimal balanced repeated treatment design
for t=4 clusters. Please calculate the variance-covariance
matrix and evaluate the design regarding confounding of
the design factors cluster, booklet, and position.

Answers to Self-Test
1. The primary reason is that there are generally more items

available in an item pool than any single student can an-
swer within the testing time allotted. To achieve suitable
content domain coverage while controlling for unwanted
effects on parameter estimates like position effects or car-
ryover effects, the items, testlets, or clusters have to be
systematically assigned to different booklets for which a
suitable booklet design is required.

2. The two primary statistical desiderata are to estimate
unbiased and efficient item parameters as well as to esti-
mate unbiased and efficient person parameters. Estima-
tion of item parameters is typically of primary concern
in early phases of a large-scale assessment of student
achievement when the psychometric properties of the in-
struments are established. After a sound psychometric
test is established, distributions of person proficiencies
are calculated for reporting. When the estimated person
parameters are unbiased, inferences based on them are
more likely to be appropriate and when they are efficient,
inferences will also be reasonably precise. This allows to
draw valid inferences from the test scores and to test
statistical hypotheses with high statistical power.

3. Even though complete permutation designs control for all
unwanted sources of variation, they require an impractical
number of booklets to be used.

4. Position effects are effects of item position within a booklet
on item difficulty, for example, if correct answers are given
more frequently if an item is presented in a cluster at the
beginning of a booklet rather than at the end of a booklet.
Position effects may be caused by fatigue or a reduction in

test-taking motivation with increasing test length or just
by a lack of time on the part of the student.

5. Carryover effects are effects of previously presented clus-
ters on response probabilities of subsequent clusters. Car-
ryover effects are a special kind of position effects. When
the concern is about the effect of a particular cluster on
the following one, this is referred to as a first-order car-
ryover effect whereas effects across more positions are
referred to as higher-order carryover effects. For exam-
ple, a first-order carryover effect is present if a particular
algebra cluster is presented after the student has already
worked on a number of similar algebra clusters, and he or
she will find it easier than if the same cluster is presented
after working on a number of geometry clusters or even
distinct clusters from a different content domain such as
reading.

6. IRT-based scaling models assume invariance of item pa-
rameters across multiple student groups or design condi-
tions and local independence of response probabilities for
students with identical proficiencies across items. Posi-
tion effects violate the assumption of invariance, because
item difficulty varies with respect to the position an item
is presented in a booklet. If unaccounted for, variations
in item parameter estimates due to position effects can
lead to severe validity problems if the item difficulties
are used to give meaning to sections of a scale, which
can transform the problem from a measurement problem
to a reporting problem. Carryover effects violate the as-
sumption of local independence and can also cause severe
validity problems.

Table 9. Booklet Design Based on a
Youden Square Design

Booklet

Position 1 2 3 4 5 6 7 8 9 10 11 12 13

1 1 2 3 4 5 6 7 8 9 10 11 12 13
2 2 3 4 5 6 7 8 9 10 11 12 13 1

Break (10 Minutes)
3 4 5 6 7 8 9 10 11 12 13 1 2 3
4 10 11 12 13 1 2 3 4 5 6 7 8 9

Note. The design is based on t = 13 clusters, b = 13
booklets, r = 4 occurrences of each cluster, k = 4 positions
within each booklet, and � = 1 occurrence of each cluster pair.

Table 10. Booklet Design Based on a
Repeated Treatment Design

Booklet

Position 1 2 3 4

1 1 2 3 4
2 4 1 2 3
3 2 3 4 1
4 3 4 1 2

Note. The design is based on t = 4 clusters, b = 4 booklets, r
= 4 occurrences of each cluster, k = 4 positions within each
booklet, and � = 4 occurrences of each cluster pair.
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7. Position effects and first-order carryover effects can be
controlled for by minimally balanced repeated treatment
designs. Because in repeated treatment designs every
cluster appears in every position exactly once, position
effects are controlled for. Furthermore, every cluster is
followed by every other cluster exactly once so that first-
order carryover effects are also controlled for.

8. The size of the item pool does not allow presenting all
items to each individual student. Because the testing time
is rather long for eighth graders, position effects may occur
due to fatigue effects. However, carryover effects are not
likely to be a problem because only one content domain
is measured. A feasible booklet design for the described
assessment situation would be a Youden square design
with t = 13 clusters entailing 10 items each, b = 13
booklets with k = 4 positions each, each cluster appearing
r = 4 times, and each pair of clusters appearing λ = 1
times. To reduce possible position effects due to fatigue
on the side of the students, a break can be included in the
middle of the testing session (see Table 9).

9. Youden square designs only exist for a few combinations
of the design parameters (number of clusters, booklets,
and positions in booklets).

10. One possible repeated treatment design is given in
Table 10. Because all values on the main diagonal of the
variance-covariance matrix are 1, and all other values are
0, the design factors are not confounded. Thus, the de-
sign controls for position effects and first-order carryover
effects.

Notes
1In the following text, the term control is used if we refer to statistical
control by averaging out unwanted variability in parameter estimates.
2To solve this shortcoming, we are developing a computer program
that constructs YSDs for given combinations of design parameters.
The program is written in Java and has a user-friendly point-and-click
interface. Currently, the program is capable of finding about 60% of the
existing YSDs. Readers interested in the program may contact the first
author for a copy.
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