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It is a widely held belief that anchor tests should be miniature versions (i.e.,
minitests), with respect to content and statistical characteristics, of the tests being
equated. This article examines the foundations for this belief regarding statistical
characteristics. It examines the requirement of statistical representativeness of an-
chor tests that are content representative. The equating performance of several types
of anchor tests, including those having statistical characteristics that differ from
those of the tests being equated, is examined through several simulation studies and
a real data example. Anchor tests with a spread of item difficulties less than that of
a total test seem to perform as well as a minitest with respect to equating bias and
equating standard error. Hence, the results demonstrate that requiring an anchor
test to mimic the statistical characteristics of the total test may be too restrictive
and need not be optimal. As a side benefit, this article also provides a comparison
of the equating performance of post-stratification equating and chain equipercentile
equating.

The Non-Equivalent groups with Anchor Test (NEAT) design is one of the most
flexible tools available for equating tests (e.g., Angoff, 1971; Kolen & Brennan,
2004; Petersen, Marco, & Stewart, 1982; Petersen, Kolen, & Hoover, 1989). The
NEAT design deals with two non-equivalent groups of examinees and an anchor test.
The design table for a NEAT design is shown in Table 1.

The test X corresponds to the new form given to a sample from population P and
the test Y corresponds to the old form given to a sample from population Q. The
anchor test A is given to both P and Q. The choice of anchor test is crucial to the
quality of equating with the NEAT design.

It is a widely held belief that an anchor test should be a miniature version (i.e., a
minitest) of the tests being equated. Angoff (1968, p. 12) and Budescu (1985, p. 15)
recommended an anchor test that is a parallel miniature of the operational forms.
More specifically, it is recommended that an anchor test be proportionally repre-
sentative or a mirror of the total tests in both content and statistical characteristics
(Dorans, Kubiak, & Melican, 1998, p. 3; Kolen and Brennan, 2004, p. 19; Petersen
et al., 1989, p. 246; von Davier, Holland, & Thayer, 2004, p. 33). Currently, most
operational testing programs that use the NEAT design employ a minitest as the an-
chor; to ensure statistical representativeness, the usual practice is to make sure that
the mean and spread of the item difficulties of the anchor test are roughly equal to
those of the tests being equated (see, e.g., Dorans et al., p. 5).

The requirement that the anchor test be representative of the total tests (i.e., the
tests being equated) with respect to content1 is justified from the perspective of
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TABLE 1
The NEAT Design

Population New Form X Old Form Y Anchor A

New form population P √ √
Old form population Q √ √

content validity and has been shown to be important by Klein and Jarjoura (1985)
and Cook and Petersen (1987). Peterson, Marco, and Stewart (1982) demonstrated
the importance of having the mean difficulty of the anchor tests close to that of
the total tests. We also acknowledge the importance of these two aspects of an an-
chor test. However, the literature does not offer any proof of the superiority of an
anchor test for which the spread of the item difficulties is representative of the to-
tal tests. Furthermore, a minitest has to include very difficult or very easy items
to ensure adequate spread of item difficulties, which can be problematic as such
items are usually scarce (one reason being that such items often have poor statisti-
cal properties like low discrimination and are thrown out of the item pool). An an-
chor test that relaxes the requirement on the spread of the item difficulties might be
more operationally convenient, especially for testing programs using external anchor
tests.

Motivated by the above, this article focuses on anchor tests that

• are content representative
• have the same mean difficulty as the total tests
• have spread of item difficulties less than that of the total tests

Operationally, such an anchor test can be constructed exactly in the same manner as
the minitests are constructed except for the requirement that it mimic the spread
of the item difficulties of the total tests. Because items with moderate difficulty
values are often more common, an operationally convenient strategy to construct
such an anchor test may be to include only moderate-difficulty items in the anchor
test.

To demonstrate the adequate performance of anchor tests with spread of item
difficulties less than that of the minitest, Sinharay and Holland (2006) defined a
“miditest” as an anchor test with a very small spread of item difficulties and a “semi-
miditest” as one with a spread of item difficulty that lies between those of the miditest
and the minitest. The semi-miditests will often be easier to construct operationally
than minitests because there is no need to include very difficult or very easy items in
them. Sinharay and Holland cited several works that suggest that the miditest will be
satisfactory with respect to psychometric properties like reliability and validity. The
next step is to examine how these anchor tests perform compared to the minitests in
test equating.

Sinharay and Holland (2006), using a number of simulation studies and a real data
example, showed that the miditests and semi-miditests have slightly higher anchor-
test-to-total-test correlations than the minitests. As higher anchor-test-to-total-test
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Statistical Representativeness of Anchor Tests

correlations are believed to lead to better equating (Angoff, 1971, p. 577; Dorans
et al., 1998; Petersen et al., 1989, p. 246; etc.), the findings of Sinharay and Hol-
land (2006) suggest that a minitest may not be the optimum anchor test, and beg
for a direct comparison of the equating-performance of minitests versus miditests
and semi-miditests. Hence, the present article compares the equating performance of
minitests versus that of miditests and semi-miditests through a series of simulation
studies and a pseudo-data example.

The next section compares the minitests versus the other two types of anchor tests
for a simple equating design. The following two sections compare the equating per-
formance of the minitest and the other anchor tests in the context of NEAT design
using data simulated from unidimensional and multidimensional item response the-
ory (IRT) models. The penultimate section describes similar results for a pseudo-data
example. The last section provides discussion and conclusions.

Comparison of Minitests and Other Anchor Tests for a Simple
Equating Design

Consider the simple case of a random groups design with anchor test (Angoff,
1971; Kolen & Brennan, 2004; Lord, 1950) in which randomly equivalent groups of
examinees are administered one of two tests that include an anchor test. Denote by
X and Y the tests to be equated and the anchor test by A. Under the assumptions that
(i) the populations taking tests X and Y are randomly equivalent, (ii) scores on X and
A, and on Y and A are bivariate normally distributed, (iii) the correlation between
scores in X and A is equal to that between scores in Y and A, and (iv) sample sizes
for examinees taking the old and new forms are equal, Lord (1950) shows that the
square of the standard error of equating (SEE) at any value xi of score in test X can
be approximated as

Var
(
l̂Y (xi )

) ≈ σ 2
Y

N

[
2
(
1 − ρ2

X A

) + (
1 − ρ4

X A

) (
xi − µX

σX

)2
]

, (1)

where the symbols have their usual meanings. Equation 1 shows that as the anchor-
test-to-total-test correlation ρXA increases, the SEE decreases (a phenomenon men-
tioned by Budescu, 1985, p. 15). Therefore, higher correlations between X and A
will result in lower SEEs in this case. This basic fact emphasizes the importance of
the results of Sinharay and Holland (2006) that focuses only on ρXA as a surrogate
for the more detailed study of equating in the present article.

Sinharay and Holland (2006) considered a basic skills test with 110 multiple
choice items that was administered to 6,489 examinees. They used the operational
34-item internal anchor test as a minitest. A 34-item semi-miditest was formed. For
the test data set, N = 6489, µ̂X = 77.5, σ̂X = 10.8, and the values of ρ̂X A were .875
and .893, respectively, for the minitest and the semi-miditest. The SEEs for the semi-
miditest and minitest were computed using the above-mentioned values and under
the additional assumptions that σ Y = σ X and ρXA = ρYA. The SEE for the semi-
miditest is always less than that for the minitest. The percent reduction in SEE for
the semi-miditest ranges from 6% to 7%.
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No result as simple as Equation 1 is found for the other popular equating de-
signs, especially for the NEAT design. Furthermore, in addition to sampling vari-
ability (or SEE), it is also important to examine the other major type of equat-
ing error: the systematic error or equating bias (Kolen & Brennan, 2004, p. 231).
There are no general results for measuring equating bias. Hence, the next sec-
tion reports the results of a detailed simulation study under a NEAT design that
was performed to investigate both equating bias and variability under several
conditions.

Simulations Under a NEAT Design from a Unidimensional IRT Model

Here, we simulated data from the two-parameter logistic (2PL) model, with the
item response function (IRF)

exp[ai (θ − bi )]

1 + exp[ai (θ − bi )]
, (1)

where the symbols have their usual meanings.

Simulation Design

Factors controlled in the simulation. We varied the following factors in the simula-
tions:

1. “Test length”. X and Y are always of equal length that is one of the values 45, 60,
and 78, to emulate three operational tests: (i) a 45-item basic skills test, (ii) the
60-item mathematics section of an admissions test, and (iii) the 78-item verbal
section of the same admissions test. The factor that we henceforth denote by
test length refers to more than simply the length of the tests to be equated. Each
test length has its own set of item parameters that was created to emulate those
of the operational test data set on which it is based (see below). Moreover, the
length of the anchor test for each test length is different as indicated in point 5,
below. For this reason we put quotes around “test length.”

2. Sample size. The sample sizes for P and Q are equal and are equal to one of
three values: 100 (small), 500 (medium), and 5,000 (large).

3. The difference in the mean ability (denoted as �a) of the two examinee popu-
lations P and Q. Four values were used: −.2, 0, .2, and .4. Units are in standard
deviation (SD) of θ .

4. The difference in the mean difficulty (denoted as �d ) of the two tests X and Y .
Three values were used: 0, .2, and .5. Units are in SD of θ .

5. The anchor test. We constructed a minitest, a semi-miditest, and a miditest, by
varying the SD of the generating difficult parameters. The SD of the difficulty
parameters of the minitest, the semi-miditest, and the miditest were assumed to
be, respectively, 100%, 50%, and 10% of the SD of the difficulty of the total
tests. The anchor test is of length 20 for the 45-item basic skills test, and is
of the same length as in the operational administrations of the two admissions
tests—35 for the 78-item test and 25 for the 60-item test.
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Statistical Representativeness of Anchor Tests

The average difficulty of the anchor tests was always centered at the average
difficulty level of Y , the old test form. We did not set the average difficulty of
the anchor tests at the average of the difficulty levels of X and Y . In operational
testing, the usual target is to make X of the same difficulty as Y . The test X often
ends up being easier or more difficult than Y because of unforeseen reasons and
one can rarely anticipate the difficulty of X beforehand.

6. The equating method. To make sure that our conclusions do not depend on
the equating method, we used two equipercentile equating methods, the post-
stratification equating (PSE) and chain equating (CE) methods. While applying
the PSE method, the synthetic population was formed by placing equal weights
on P and Q.

The values for the above six factors were chosen after examining data from several
operational tests.

Generating item parameters for the total and anchor tests. The 2PL model was fit-
ted to a data set from each of the above-mentioned three operational tests to obtain
marginal maximum likelihood estimates of the item parameters under a N (0, 1) abil-
ity distribution. These three sets of item parameter estimates were used as generating
item parameters of the three Y-tests. Then, a bivariate normal distribution D was fit-
ted to the estimated log(a)’s and b’s for each Y-test. The generating item parameters
for each X-test were drawn from the respective fitted bivariate normal distribution D.
Then the difficulty parameters for X were all increased by the amount �d to ensure
that the difference in mean difficulty of X and Y is equal to �d . The generating item
parameters for the anchor tests were also drawn using the fitted distribution D. The
generating item parameters of the minitest were drawn from the distribution D as
is. The item parameters of the semi-miditest and the miditest were generated from a
distribution that is the same as D except for the SD of the difficulties, which was set
to one-half and one-tenth, respectively, of the corresponding quantity in D. Note that
the generating a-parameters are obtained by taking an exponential transformation of
the generated log(a)’s. The generating item parameters for the X-test, Y-test, and the
anchor tests were the same for all M replications under a simulation condition. For
any combination of a “test length,” �a , and �d , the population equipercentile equat-
ing function (PEEF), described shortly, is computed and used as the criterion.

The steps in the simulation. For each simulation condition (determined by a “test
length,” sample size, �a , and �d ), the generating item parameters of the Y-test were
the same as the estimated item parameters from the corresponding real data, and the
generating item parameters of the X-test and the anchor tests were randomly drawn
(as described earlier) once, and then M = 1,000 replications were performed. Each
replication involved the following three steps:

1. Generate the ability parameters θ for the populations P and Q from ability dis-
tributions gP (θ ) = N (�a, 1) and gQ(θ ) = N (0, 1), respectively.

2. Simulate scores on X in P, Y in Q, and those on the minitest, miditest, and semi-
miditests for both P and Q from a 2PL model using the draws of θ from step
1, the fixed item parameters for Y , and the generated item parameters for X and
the anchor tests.
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3. Perform six equatings using the scores of X in P, Y in Q, and those of the
minitest, miditest, and semi-miditest in P and Q. One equating is done for each
combination of an anchor test (of the three) and an equating method (either
PSE or CE). Each of these equatings involved (i) presmoothing the observed
test-anchor test bivariate raw score distribution using a loglinear model (Hol-
land & Thayer, 2000) that preserved the first five univariate moments and a
crossproduct moment (increasing the number of moments did not affect the
results substantially), and (ii) equipercentile equating with linear interpolation
(e.g., Kolen & Brennan, 2004) to continuize the discrete score distributions.

Computation of the population equipercentile equating function. The PEEF for any
combination of a “test length”, �a , and �d was the single-group equipercentile
equating of X to Y using the true raw score distribution of X and Y in a synthetic
population T that places equal weights on P and Q. We used the iterative approach
of Lord and Wingersky (1984) to obtain P(X = x |θ ), the probability of obtaining a
raw score of X = x by an examinee with ability θ . This required the values of the
item parameters and we used the generating item parameters for test X. Once P(X =
x |θ ) is computed, r(x), the probability of a raw score of x on test X in population T
is obtained by numerical integration as

r (x) =
∫

θ

P(X = x |θ )gT (θ )dθ, (2)

where gT (θ ) = .5gP(θ ) + .5gQ(θ ). The same approach provided us with s(y), the
probability of a raw score of y on test Y in population T . The true raw score distri-
butions r(x) and s(y), both discrete distributions, are then continuized using linear
interpolation (e.g., Kolen & Brennan, 2004). Let us denote the corresponding con-
tinuized cumulative distributions as R(x) and S(y), respectively. The PEEF is then
obtained as S−1 (R(x)). The PEEF is the same for each replication and sample size,
but varies with “test length,” �a , and �d . The PEEF can be seen as the population
value of the IRT observed score equating (e.g., Kolen & Brennan, 2004) using linear
interpolation as the continuization method.

Computation of the performance criteria: equating bias, SD, and RMSE. After the
equating results from the M replications are obtained, we compare the anchor tests
using bias (a measure of systematic error in equating) and SD (a measure of random
error in equating) as performance criteria. For a simulation condition, let êi (x) be the
equating function in the ith replication providing the transformation of a raw score
point x in X to the raw score scale of Y . Suppose e(x) denotes the corresponding
PEEF. The bias at score-point x is obtained as

Bias(x) = 1

M

M∑
i=1

[êi (x) − e(x)] = ¯̂e(x) − e(x), where ¯̂e(x) = 1

M

M∑
i=1

êi (x),
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and the corresponding standard deviation is obtained as

SD(x) =
{

1

M

M∑
i=1

[êi (x) − ¯̂e(x)]2

}1

2 ·

We can also compute the corresponding root mean squared error (RMSE) as

RMSE(x) =
{

1

M

M∑
i=1

[êi (x) − e(x)]2

}1

2 ·

It can be shown that

[RMSE(x)]2 = [SD(x)]2 + [Bias(x)]2 ,

i.e., the RMSE combines information from the random and systematic error.
As overall summary measures for each simulation case, we compute the weighted

average of bias,
∑

x r (x)Bias(x), the weighted average of SD,
√∑

x r (x)SD2(x),

and the weighted average of RMSE,
√∑

x r (x)RMSE2(x), where r(x) is defined in
Equation 2.

How realistic are our simulations? To have wide implications, it is important that
our simulations produce test data that adequately reflect reality. Hence, we used real
data as much as possible in our simulations from a unidimensional IRT model. Fur-
ther, Davey, Nering, and Thompson (1997, p. 7) reported that simulation under an
unidimensional IRT model reproduces the raw score distribution of real item re-
sponse data quite adequately. The data sets simulated in our study were found to
adequately reproduce the raw score distributions of the three operational data sets
considered. Because the observed score equating functions are completely deter-
mined by the raw score distribution, our simulations are realistic for our purpose.
We chose the 2PL model as the data generating model because Haberman (2006)
demonstrated that it describes real test data as well as the 3PL model. Although we
generate data from an IRT model in order to conveniently manipulate several fac-
tors (most importantly, the item difficulties for the anchor tests) in the simulation,
we are not fitting an IRT model here. Hence issues of poor IRT model fit are mostly
irrelevant to this study.

Simulation Results

The averages of the raw scores on the operational tests are 24.4, 36.7, and 46.6 for
the 45-item test, 60-item test, and 78-item test, respectively. The corresponding SDs
are 7.1, 10.1, and 12.8, respectively. Because of our simulation design, the means
and SDs of the corresponding simulated Y-tests are very close to these values. As
in Sinharay and Holland (2006), the average total-test-to-anchor-test correlation is
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highest for the miditest followed by the semi-miditest, and then the minitest. For
example, for the 78-item test, sample size 5,000, �d = .5, and �a = .4, the averages
are .888, .885, and .877, respectively.

Tables 2–7 contain the weighted averages of bias, SD, and RMSE, multiplied by
100, for the several simulation conditions.

In these tables, each vertical cell of three values corresponds to a simulation con-
dition. The three numbers in each cell correspond, respectively, to the minitest, the
semi-miditest, and the miditest.

Figure 1 shows the equating bias, multiplied by 100, for the CE method for twelve
simulation cases with 5,000 examinees and �d = .0.

Each column in the figure corresponds to a value of �a (−.2, 0, .2, or .4) and each
row in the figure corresponds to a value of the number of items (45, 60, or 78). In
any plot, the value of 100 × Bias(x) is shown for all possible values of x (raw score),
and two dotted and vertical lines denote the 2.5th percentile and the 97.5th percentile
of the true raw score distribution (given by Equation 2) of the test to be equated. The
range of the Y axis is the same for all the four plots in any row for convenience of
viewing.

The weighted averages of bias, SD, and RMSE reported in Tables 2–7 are in units
of raw-score points. A difference of .5 or more in the raw score scale is usually a
“difference that matters” (DTM), i.e., only a difference more than a DTM leads to
different equated raw scores (Dorans & Feigenbaum, 1994). The biases in Tables 2
and 3 never exceed a point, but reach close to a point.

The tables and the figure lead to the following conclusions:

• Effects on bias (Tables 2 and 3; Figure 1):

– Group difference �a has a substantial effect on bias. Absolute bias is small
when �a = 0 and increases as |�a| increases. This holds for both CE and
PSE. This finding agrees with earlier research work such as Hanson and
Beguin (2002) and common advice by experts (e.g., Kolen and Brennan,
2004, p. 232) that any group difference leads to equating bias. The sign of
�a causes a change in the sign of bias, but does not affect the magnitude of
bias.

– Both CE and PSE are biased, but CE is always less biased than PSE.
– Anchor test type has a small but nearly consistent effect on bias. Miditests

and semi-miditests are usually less biased overall than minitests. This holds
for both CE and PSE.

– “Test length” has a small effect on bias. It is not monotone for PSE and the
effect is smaller for CE.

– Both �d and sample size have almost no effect on bias.

• Effects on SD (Tables 4 and 5):

– Sample size has a large effect on SD, which decreases as sample size in-
creases.

– “Test length” has a modest effect on SD for both CE and PSE. SD increases
as “test length” increases.
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Statistical Representativeness of Anchor Tests

– PSE has slightly less SD than CE, especially for small sample size condi-
tions.

– �a has a small effect on SD that is largest for PSE and small sample sizes.
– Anchor test type has a small effect on SD mostly favoring miditest and

semi-miditest over minitest, mostly for the small sample size.
– �d has almost no effect on SD.

• Effects on RMSE (Tables 6 and 7; Figure 1):

– Sample size has a large effect on RMSE, which decreases as sample size
increases.

– �a has a modest effect on RMSE, which increases as |�a| increases.
– “Test length” has a modest effect on RMSE. RMSE increases as “test length”

increases.
– CE versus PSE interacts with sample size in its effect on RMSE. PSE is

slightly better for the small sample size while CE is much better for the large
sample size, and is slightly better for medium sample size.

– Anchor test type has a small but nearly consistent effect on RMSE favoring
miditest and semi-miditest over minitest for both CE and PSE.

– �d has almost no effect on RMSE.

With respect to the focus of this study, the main conclusion is that the effect
of the type of anchor test consistently favors miditests and semi-miditests over
minitests, 2 but is small and not practically significant, and is much smaller than
the effects of (a) CE versus PSE for bias, SD and RMSE, or (b) sample size on
SD and RMSE, or (c) �a on bias and RMSE or (d) “test length” on SD and
RMSE.

The result that CE is better than PSE with respect to equating bias and worse than
PSE with respect to SD in our simulations augment the recent findings of Wang, Lee,
Brennan, and Kolen (2006), who compared the equating performance of PSE and CE
in a simulation study. While Wang et al. varied the SD of the ability distribution that
we did not, we presmoothed the data and varied the sample size and test difficulty
difference, something that Wang et al. did not.

Simulations Under NEAT Design from a Multidimensional IRT Model

Simulation Design

We obtained a data set from a licensing test. Of the total 118 multiple choice items
in the test, items 1–29 are on language arts, 30–59 are on mathematics, 60–88 are on
social studies, and 89–118 are on science. As each of these four content areas can be
considered to measure a different dimension, we fitted a four-dimensional IRT model
(e.g., Reckase, 1997) with IRF

(1 + e−(a1i θ1+a2i θ2+a3i θ3+a4i θ4−bi ))−1,

θ = (θ1, θ2, θ3, θ4)′ ∼ N4(µ = (0, 0, 0, 0)′, �),
(3)
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FIGURE 1. Bias (multiplied by 100) in the CE method for tests with 5,000 examinees and
�d = .0. The three rows of plots correspond to number of items = 45, 60, and 78. The four
columns correspond to population difference �a = −.2, 0, .2, and .4.

the symbols having the usual meanings, to the data set. The diagonals of � are set to
1 to ensure identifiability of the model parameters. For any item i, only one among
a1i , a2i , a3i , and a4i is assumed to be non-zero, depending on the item content (e.g.,
for an item from the first content area, a1i is nonzero while a2i = a3i = a4i = 0), so
that we deal with a simple-structure multidimensional IRT (MIRT) model.

The estimated item parameter values were used as generating item parameters of
test Y . A bivariate normal distribution D∗

k was fitted to the log-slope and difficulty pa-
rameter estimates corresponding to kth content area, k = 1, 2, . . . , 4. The generating
item parameters for kth content area for X were randomly drawn from D∗

k . Because
we are generating data from a multidimensional IRT model, X can differ from Y in
more complicated ways than for the unidimensional IRT simulation. Hence we ma-
nipulated the difficulty parameters of the test X in the following ways to consider
several patterns of differences in difficulty between X and Y:
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1. No difference (denoted as “N”)—no manipulation.
2. We added �d to the generating difficulty parameters for the first content area

for X (denoted as “O” because the difference between X and Y is in one dimen-
sion).

3. We added �d to the generating difficulty parameters for the first and third con-
tent areas for X (denoted as “T” because the difference is in two dimensions).

4. We added �d to the generating difficulty parameters of each item in X (denoted
as “A” because the difference is in all dimensions).

5. We added �d to the generating difficulty parameters for the first and third con-
tent areas in X, but subtracted �d from the generating difficulty parameters for
the second and fourth content area (denoted as “D” because the difference is
differential in the dimensions).

We assume that the anchor test has, respectively, 12, 13, 12, and 13 items of the four
content areas, leading to an anchor test length of 50. The generating item param-
eters for the kth content area for the anchor tests were also randomly drawn using
the respective distribution D∗

k . The generating item parameters of the minitest were
randomly drawn from the distribution D∗

k as is. The generating item parameters of
the semi-miditest and the miditest were randomly drawn from a distribution that is
the same as D∗

k except for the SD of the difficulties, which was set to one-half and
one-tenth, respectively, of the corresponding quantity in D∗

k . The generating item pa-
rameters for the tests X, Y , and the anchor tests were the same for all R replications.

We only used test length of 118 and sample size of 5,000 for the multidimensional
simulation. We let �a vary among the three values 0, .2, and .4, and �d among the
three values 0, .2, and .5. We used the same three anchor tests (minitest, miditest,
and semi-miditest) and the same two equating methods (CE and PSE) as in the uni-
dimensional IRT simulation.

The steps in the simulation are the same as those for the unidimensional IRT sim-
ulation except for the following three differences:

• The number of replications is 200 here to reduce computational time.
• The difference between the populations P and Q may be of more complicated

nature just like the difference between the tests X and Y . We used gQ(θ ) =
N3(0, �̂) where �̂ is the estimate obtained from fitting the model expressed
in Equation 3 to the operational test data set. We used gP (θ ) = N3(µP , �̂),
where µP , which quantifies the difference between P and Q, was set to be
one of the following: 1. µP = 0, i.e., no difference (“N”) between P and
Q, 2. µP = (�a, 0, 0, 0)′, i.e., is there is difference in one dimension (“O”),
3. µP = (�a, 0,�a, 0)′, i.e., there is difference in two dimensions (“T”), 4.
µP = (�a,�a,�a,�a)′, i.e., the difference is the same in all dimensions (“A”),
and 5. µP = (�a,−�a,�a,−�a)′, i.e., differentially different (“D”). The fifth
type of difference, “D”, is similar to what was found in, e.g., Klein and Jarjoura
(1985; see, e.g., figures 2 and 3 in that paper).

• Application of Equation 2 to compute the true equating function here would
have required four-dimensional numerical integration. Hence we take a differ-
ent approach to compute the true equating function. For each simulation con-
dition, we generate responses to both X and Y of huge examinee samples, of
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FIGURE 2. Bias of equating for equating X to Y (top row) and Y to X (bottom row) for
minitest and semi-miditest for the pseudo-data example.

size 250,000, from P and Q, and perform a single-group equipercentile equat-
ing (combining the samples from P and Q) using linear interpolation. We re-
peated this computation several times with different random seeds—negligible
differences between the equating functions obtained from these repetitions en-
sured that the above method produced the true equating function with sufficient
accuracy.

Simulation Results

Tables 8 and 9 show the RMSEs for PSE and CE for the several simulation condi-
tions. Each vertical cell of three values show the RMSEs for a simulation case. The
three numbers in each cell correspond, respectively, to the the minitest, the semi-
miditest, and the miditest. The SDs (not shown) are very close for all the simulation
conditions and the differences in the equating bias (not shown) primarily govern the
differences between the RMSEs.
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FIGURE 3. SEE for equating X to Y (top two panels) and Y to X (bottom two panels) for
minitest and semi-miditest for the pseudo-data example.

The factor that has the largest effect on the RMSE is the population difference
�a . The RMSE increases as �a increases. The pattern of difference between the two
populations also has substantial effect, with pattern “A” associated with the largest
values of RMSE. The test differences appear to have no effect on the RMSE.

With respect to the focus of this study, several conditions slightly favor the miditest
and semi-miditest while a few others slightly favor the minitest. However, the dif-
ference in RMSE between the anchor tests is always small, and far below the DTM,
even under conditions (e.g., population difference pattern “D” and �a = .4) that are
adverse to equating and worse than what is usually observed operationally. Thus,
there seems to be no practically significant difference in equating performance of the
three anchor tests.

The results regarding comparison of PSE-vs-CE, which maybe of interest as Wang
et al. (2006) did not generate data from a MIRT model, are similar to those from our
unidimensional IRT simulation. The RMSE for PSE is mostly larger than CE when
the populations are different, the largest differences being observed when population
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TABLE 8
RMSE (×100) for the Different Multidimensional IRT Simulation Conditions for the PSE
Method for a 118-Item Test and Sample Size of 5,000 for High-Correlation Case

Test Difference
Population
Difference N O T A D

Pattern �a �d = 0 .2 .5 .2 .5 .2 .5 .2 .5

N .0 29 29 30 29 30 30 30 29 30
28 28 28 28 29 28 30 28 29
28 28 28 28 29 28 29 28 29

O .2 31 32 32 32 30 32 31 32 32
31 31 32 31 30 31 32 31 32
31 31 34 31 31 31 33 32 35

.4 37 36 39 34 34 35 36 37 42
36 37 39 35 35 36 38 37 42
39 41 44 38 38 39 40 41 48

T .2 38 39 30 40 32 39 31 42 29
37 37 31 38 33 37 32 40 29
37 37 31 38 31 37 32 40 31

.4 58 35 35 38 41 36 38 33 32
54 37 36 39 43 37 39 34 32
56 35 35 36 37 35 37 34 35

A .2 59 59 56 59 57 59 57 59 56
58 57 58 58 58 58 59 58 58
56 56 55 56 56 56 56 56 55

.4 107 103 103 103 103 103 103 103 103
105 105 105 106 106 105 106 105 105
104 098 098 098 098 098 098 098 098

D .2 29 29 28 29 30 29 30 30 35
29 29 29 29 31 30 31 29 34
28 28 30 28 29 28 30 29 40

.4 30 30 29 34 37 32 32 29 47
37 33 31 39 42 36 37 30 43
30 31 32 32 33 30 31 35 56

Note. The three numbers in each cell correspond, respectively, to the minitest, the semi-miditest, and the
miditest.

difference is of the type A and �a = .4 (whereas CE leads to RMSEs ranging be-
tween .41 and .43, PSE leads to RMSEs ranging between 1.03 and 1.07). Interest-
ingly, the PSE performs slightly better than CE when the population difference is
of the type D, even when �a = .4. This finding somewhat contradicts the recom-
mendation of Wang et al. (2006, p. 15) that “. . . generally speaking, the frequency
estimation method does produce more bias than chained equipercentile method and
the difference in bias increases as group differences increase” as the “difference in
bias” seems to depend in a complicated manner on the type of group difference. This
can be a potential future research topic.
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TABLE 9
RMSE (×100) for the Different Multidimensional IRT Simulation Conditions for the CE
Method for a 118-Item Test and Sample Size of 5,000 for High-Correlation Case

Test Difference
Population
Difference N O T A D

Pattern �a �d =0 .2 .5 .2 .5 .2 .5 .2 .5

N .0 32 31 32 31 32 32 32 31 32
30 30 31 30 31 30 31 30 31
30 30 30 30 30 30 30 30 30

O .2 31 32 31 32 31 32 31 32 32
30 31 31 31 31 30 31 30 31
30 31 32 31 31 30 31 31 33

.4 32 31 33 31 31 31 32 32 35
31 32 33 32 32 32 32 32 34
33 34 36 32 32 33 33 34 39

T .2 32 32 31 33 31 33 31 34 31
31 31 31 32 31 31 31 32 30
31 31 32 31 31 31 32 32 33

.4 36 31 31 32 34 32 32 31 32
34 31 31 32 34 32 32 31 31
35 35 36 34 33 35 35 36 40

A .2 34 34 33 34 34 34 34 34 33
33 33 34 34 34 34 34 34 34
33 32 33 33 33 33 33 32 33

.4 43 42 42 42 42 42 43 41 41
42 43 43 43 43 43 44 43 42
41 40 39 40 40 39 40 39 39

D .2 31 31 31 32 31 31 31 34 40
31 31 31 31 32 32 32 31 37
30 30 34 31 31 30 32 32 45

.4 32 32 34 32 34 32 34 37 60
34 32 32 34 37 34 35 33 53
32 37 41 34 33 35 36 46 71

Note. The three numbers in each cell correspond, respectively, to the minitest, the semi-miditest, and the
miditest.

For the data set from the 118-item test, the estimated correlations between the
components of θ range between .73 and .89, which can be considered too high for
the test to be truly multidimensional. Hence, we repeated the simulations by consid-
ering a variance matrix (between the components of θ ) �∗ whose diagonals are the
same as those of �, but whose off-diagonals are re-adjusted to make each correlation
implied by �∗ .15 less than that implied by �. This brings down the correlations to
values (between .58 and .74) that are high enough to be practical, but also low enough
for the test to be truly multidimensional. The results for these simulations are similar
to those in Tables 8 and 9 and are not reported. We also considered several content
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nonrepresentative anchor tests, but they had mostly large RMSEs (results not shown),
demonstrating the importance of content representativeness of the anchor tests. We
also repeated the above multidimensional IRT simulation procedure using an admis-
sions test data set; we fitted a 3-dimensional MIRT model as the test has three distinct
item types; the results (not shown) were similar as above, i.e., there was hardly any
difference in equating performance of the three types of anchor tests.

Pseudo-Data Example

It is not easy to compare a minitest versus a miditest or semi-miditest in opera-
tional setting, as almost all operational anchor tests are constructed to be minitests.
However, a study by von Davier, Holland, and Livingston (2005) allowed us perform
the comparison, even though it is rather limited because of short test lengths and
short anchor lengths. The study considered a 120-item test given to two different ex-
aminee samples P and Q of sizes 6,168 and 4,237, respectively. The sample Q has a
higher average score, by about a quarter in SD-of-raw-score unit. Two 44-item tests
X and Y , as well as anchor tests (that were constructed to be minitests) of lengths 16,
20, and 24 were constructed by partitioning the 120-item test. The 20-item anchor
was a subset of the 24-item anchor and the 16-item anchor was a subset of the 20-
item anchor. The test X was designed to be much easier (the difference being about
128% in SD-of-raw-score unit) than the test Y .

Of the total 120 items in the test, items 1–30 are on language arts, 31–60 are
on mathematics, 61–90 are on social studies, and 91–120 are on science. As the
“minitest,” we take the 16-item anchor test of von Davier et al. (2005). There were
not enough middle-difficulty items to choose a miditest. The semi-miditest we chose
was a subset of the 24-item anchor test of von Davier et al. We ranked the six items
within each of the four content areas in the 24-item anchor test according to their
difficulty (proportion correct); the four items ranked 2nd to 5th within each content
area were included in the 16-item semi-miditest. Nine items belonged to both the
minitest and semi-miditest. We refer to this example as a “pseudo-data” example
rather than a “real data” example because the total tests and the anchor tests we
consider were not operational, but artificially constructed from real data.

Note that by construction, the semi-miditest, like the minitest, is content represen-
tative. Also, the semi-miditest has roughly the same average difficulty as the minitest;
the average difficulties of the minitest and the semi-miditest are .68 and .69, respec-
tively, in P, and .72 and .73, respectively, in Q. However, the spread of the item
difficulties of the semi-miditest is less than that of the minitest. For example, the SD
of the item difficulties of the minitest and the semi-miditest are .13 and .09, respec-
tively, in P, and .12 and .08 in Q (the SD of the item difficulties for X in P is .12
while that for Y in Q is .17).

The first four rows of Table 10 show the relevant anchor-test-to-total-test correla-
tion coefficients.

We computed the equating functions for PSE and CE equipercentile methods, us-
ing presmoothing and linear interpolation, for the minitest and the semi-miditest for
equating X to Y by pretending that scores on X were not observed in Q and scores
on Y were not observed in P (i.e., treating the scores on X in Q and on Y in P as
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TABLE 10
Findings from the Long Basic Skills Test

Minitest Semi-Miditest

Correlation for X and A in P .75 .73
Correlation for Y and A in Q .73 .68
Correlation for X and A in Q .76 .73
Correlation for Y and A in P .71 .68
Weighted average of bias: Equating X to Y , PSE .31 .34
Weighted average of absolute bias: Equating X to Y , PSE .36 .37
Weighted average of bias: Equating X to Y , CE −.05 −.06
Weighted average of absolute bias: Equating X to Y , CE .18 .08
Weighted average of bias: Equating Y to X, PSE .34 .35
Weighted average of absolute bias: Equating Y to X, PSE .36 .36
Weighted average of bias: Equating Y to X, CE .06 .03
Weighted average of absolute bias: Equating Y to X, CE .21 .12

missing), and then for equating Y to X by pretending that scores on Y were not
observed in Q and scores on X were not observed in P. We also computed the cri-
terion (“true”) equating function by employing a single-group equipercentile equat-
ing with linear interpolation on all the data from the combined sample of P and
Q.

Figure 2 shows a plot of the bias in equating X to Y and Y to X for the semi-miditest
and minitest. The bias here is defined as the difference between an equating function
and the above-mentioned criterion equating function. Each panel of the figure also
shows using vertical lines the five quantiles, for p = .025, .25, .50, .75, .975, of the
scores on the test to be equated in the combined sample including P and Q.

Figure 3 shows a plot of the SEE for equating X to Y and for equating Y to X for
the semi-miditest and minitest. Contrary to the intuitive expectations of some of our
colleagues, Figure 3 shows that at the extreme scores the SEE obtained by using a
mini anchor test is not smaller than the SEE obtained by using a semi-miditest. If
anything, the opposite phenomenon holds. Also, Figures 1 and 3 show that at the
extreme scores the bias for a semi-miditest is not systematically worse than that for
a minitest either.

Table 10 also shows weighted averages of equating bias, the weight at any score
point being proportional to the corresponding frequency in the combined sample.

There is hardly any difference between the minitest and the semi-miditest with
respect to equating bias and SEE, especially in the region where most of the ob-
servations lie. The PSE method slightly favors the minitest while the CE method
slightly favors the semi-miditest. Compared to the PSE method, the CE method has
substantially lower equating bias and marginally higher SEE.

Thus, the pseudo-data example, even with its limitations, such as short test and
anchor test lengths and large difference between the total tests, provides us with
some evidence that a semi-miditest does not perform any worse than a minitest in
operational equating.
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Discussion and Conclusions

This article examines the choice of anchor tests for observed score equating, and
challenges the traditional view that a “minitest” is the best choice for an anchor
test. Several simulation studies and a pseudo-data example are used to study the
equating performance, especially equating bias and the SEE, of several anchor tests,
including those having statistical characteristics that differ from those of a minitest.
We show that content-representative anchor tests with item difficulties that are cen-
tered appropriately but have less spread than those of total tests perform as well as
minitests in equating. Note that our suggested anchor tests will often be easier to
construct operationally than minitests.

Thus, our results suggest that the requirement of an anchor test to have the same
spread of item difficulty as the total tests may be too restrictive and need not be opti-
mal. The design of anchor tests can be more flexible than the use of minitests without
losing any important statistical features in the equating process. Our recommenda-
tion then is to enforce a restriction on the spread of item difficulties of an anchor test
only when it leads to operational convenience. For example, for tests using internal
anchors, using a minitest (i.e., restricting the spread to be the same as that of the
total tests) may be more convenient because the scarce extreme difficulty items can
be used in the anchor test and hence in both of the tests to be equated. For external
anchors, our recommendation is to worry about content, average difficulty, and any
other requirement, but not about spread of difficulty.

Our findings will be most applicable to testing programs using external anchors.
All the results reported in this article were obtained using external anchors. Though
some limited simulations (results not reported) showed that the miditest and semi-
miditest perform as well as the minitest even for internal anchors, we do not rec-
ommend the use of the formers to the internal anchor case because of the above-
mentioned reason (the scarce items being used in both of the tests to be equated) and
also because including middle difficulty items in the anchor test might create diffi-
culties for the test developers to meet the test specifications when they choose the
remaining items in the total test.

Though not the focus of the article, we also find interesting results regarding the
comparison of PSE and CE that augment the recent findings of Wang et al. (2006).
Both of these studies find that CE has less equating bias and more SEE than PSE
in general. However, our work is more extensive than Wang et al. regarding some
aspects, e.g., we simulate data under a MIRT model (that can be argued to reflect
reality better than a unidimensional IRT model) and perform presmoothing of the
data using loglinear models.

Before full-scale operational use of miditests and semi-miditests, the following
issues may need attention:

1. A comparison of the performance of miditests and semi-miditests with minitests
under more conditions is needed. For example, this study did not vary factors
such as

(a) ratio of the length of the anchor and the total test given a total test length,
(b) mean difficulty of the anchor test in comparison to that of the total tests,
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(c) distribution of the item difficulties for the total test,
(d) ratio of the sizes of the samples from P and Q,
(e) the SD of the generating ability distributions, and
(f) the difference in mean ability of Q and mean difficulty of Y . The differ-

ence was set equal in our simulations; however, the semi-miditest and the
miditest performed as well as the minitest in limited simulations performed
by setting these two quantities unequal (results not reported here).

2. A comparison of miditests and semi-miditests with minitests for several opera-
tional data sets should be performed.

3. It will be useful to examine the equating performance of miditests and semi-
miditests for other types of equating methods such as IRT true score equating.
It may be useful to consider other equating criteria like the same distributions
property (Kolen & Brennan, 2004) and the first- and second-order equity prop-
erty (e.g., Tong & Kolen, 2005).

4. The effect of miditests and semi-miditests on the robustness of anchor tests to
varying degrees of differential item functioning (DIF) should be examined. It
may happen that the difficulty of some anchor test items changes between the
two test administrations because of context effects, test security issues, etc.—
and it will be useful to examine whether minitests or miditests are more robust
to such problems.

5. The following practical issues should be considered:
(a) When the anchor test is external, can the examinees easily find it if it is a

miditest (and be less motivated to answer that)?
(b) How to choose a miditest or semi-miditest when the anchor items are mostly

based on a shared stimulus like a reading passage.

Notes
1A content-representative anchor is one in which the proportion of items in each content

area is the same as, or very similar to, that of the total tests.
2The only simulation cases when the minitest performs better compared to miditest and

semi-miditest correspond to 78 items, 100 examinees, and �d = 0 or .2 (e.g., see Tables 6
and 7); even for these cases, it was found that the advantage of the minitest is not statistically
significant.
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