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P enfield’s (2014) “Instructional Module on Polytomous
Item Response Theory Models” begins with a review of di-

chotomous response models. He refers to these as The Build-
ing Blocks of Polytomous IRT Models: The Step Function.
The mathematics of these models and their interrelation-
ships with the polytomous models is correct. Unfortunately,
the step characterization for dichotomous responses, which
he uses to explain the two most commonly used classes of
polytomous models for ordered categories, is incompatible
with the mathematical structure of these models. These two
classes of models are referred to in Penfield’s paper as adja-
cent category models and cumulative models. At best, taken
in the dynamic sense of taking a step, the step metaphor leads
to a superficial understanding of the models as mere descrip-
tions of the data; at worst it leads to a misunderstanding of
the models and how they can be used to assess if the empiri-
cal ordering of the categories is consistent with the intended
ordering. The purpose of this note is to explain why the step
metaphor is incompatible with both models and to summarize
the distinct processes for each. It is also shows, with concrete
examples, how one of these models can be applied to better
understand assessments in ordered categories.

Adjacent Category Models
First consider the adjacent category models. They are called
such because, as shown below, a simple rendition of the model
involves the ratio of the probabilities of two adjacent cate-
gories. Consider, for example, the polytomous Rasch model
(PRM), the simplest special case of the class of adjacent
category models. It has two common parameterizations, the
partial credit and rating scale, which at the level of the re-
sponse process of a single person to a single item are identical.
The only difference is in the parameterization: if the struc-
ture across items is the same, as in many rating response
formats (such as strongly disagree, disagree, agree, strongly
agree), it may be that category parameters can be taken as
identical across the items to give the rating parameterization;
otherwise the items may have different maximum scores and
different parameter estimates to give the partial credit pa-
rameterization. Whether or not the rating formulation holds
is an empirical question.
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It is helpful to have the graphical presentation of the re-
sponse structure for the categories. Figure 1, which is similar
to the second example in Figure 2 of Penfield (2014), shows
the probability of a response in each category as a function
of the location of the entity being assessed. Penfield refers to
these probability functions as item response functions (IRFs).
Figure 1 also shows the points of intersection (bi1, bi2, bi3),
not shown in Penfield, of pairs of adjacent IRFs. They are the
points on the trait where the probability of response in adja-
cent categories is identical. In the case of dichotomous items,
there is only one such point, and in performance assessment
it is referred to generally as an item’s difficulty. In general
terms, the point which has a 50% probability of a response in
either category is referred to as a threshold. This is the origi-
nal terminology in Andrich (1978). Unfortunately, it is these
points of equal probability which are referred to as steps, a
terminology that has been propagated despite not being com-
patible with the either the PRM or with its generalization, the
so-called general partial credit model (Muraki, 1992).

The Polytomous Rasch Model

In part because of its special features, including having the
least parameters, the PRM will be used to study the parame-
ters in Figure 1. It is stressed that the points noted here are
relevant for all adjacent category models. A generalization is
considered later in the section.

Using the notation in Penfield (2014), the partial credit
parameterization of the PRM takes the form

Pi0(θ) = 1
1 + ∑m

r=1 [exp(
∑r

k=1 (θ − bik)]
, (1)

Pi j (θ) = exp(
∑ j

k=1 (θ − bik)
1 + ∑m

r=1 [exp(
∑r

k=1 (θ − bik)]
, j > 0, (2)

where m + 1 is the number of categories for item i . (Note
that because the focus here is on just one item, and following
Penfield, the maximum score m, which can vary from item
to item, is not subscripted by i . Although Equations 1 and 2
comprise a common way of expressing the model, the PRM can
be simplified in such a way that it helps understand why the
step metaphor is not compatible with it. If the numerator in
Equation 2 is expanded and incorporated in the denominator,
it takes the form

Pi j (θ) = exp( jθ − ∑ j
k=1 bik)

1 + ∑m
r=1 [exp(rθ − ∑r

k=1 bik)]
, j > 0, (3)
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FIGURE 1. Polytomous item with four ordered categories.

where j is simply the count of the number of thresholds
bik exceeded in the response, m − j is the number not ex-
ceeded, and θ is the location of any person on the trait. The
orientation of the trait in Figure 1 is increasing from left to
right. Thus, a score of 2, in which m = 3, implies a response
which exceeds both thresholds 1 and 2 but fails threshold 3.
In addition, by defining

∑0
k=0 bik ≡ 0, Equation 3 also char-

acterizes Equation 1, the response in the first category, in
which no thresholds are exceeded. This gives the general,
single equation

Pi j (θ)= exp( jθ − ∑ j
k=0 bik)

∑m
r=0 [exp(rθ − ∑r

k=0 bik)]
, j =0, 1, 2, ..., m.

(4)

On simplification, the ratio of the probabilities of
Pi j (θ)and Pi( j−1)(θ) takes the form

Pi j (θ)/Pi( j−1)(θ) = exp(θ − bi j ), ∀ j, j = 1, 2..., m.

(5)

Further,

Pi j (θ)/(Pi( j−1)(θ) + Pi j (θ)) = exp(θ − bi j )

/(1 + exp(θ − bi j ), ∀ j, j = 1, 2..., m, (6)

which is the dichotomous Rasch model at threshold bi j . Equa-
tion 6 can be used to derive Equation 4, and hence the termi-
nology of adjacent category for this class of models. Equation
6, the conditional probability of a response in the intended
higher of two adjacent categories, is a latent dichotomous re-
sponse between the categories. It is stressed that even though
it is the building block of adjacent category models, this re-
sponse is never observed.

The characterization by Penfield for the step metaphor
is that of taking a step across the parameter bi j . Thus, for
response functions as shown in Figure 1, and acknowledging
Masters (1982) and Muraki (1992), Penfield writes:

One can conceptualize the score an examinee receives as being
determined by the success that she has had in transitioning,
or stepping, to successfully higher score categories. (Penfield,
2014, p. 39)

This conceptualization implies a dynamic, sequential pro-
cess of some kind. However, Equation 4 does not characterize
the process by which the person being assessed reaches a lo-
cation on the continuum. It does not characterize it, either
in the case of self-assessment as in attitude assessment, or
in the case of performance assessment. Instead, because it
is a static model, and for a single location θ , the PRM char-
acterizes only the probability of a response in each category
as a function of the values of the thresholds. That it cannot
be a sequential step process can be clarified in a number of
ways.

First, although Penfield uses the dichotomous response
at the thresholds to extend to the polytomous response, the
language of transitioning or stepping across the difficulty
parameter in the dichotomous case is never used. For ex-
ample, in a test of achievement where the response cate-
gories may be incorrect and correct, the person does not tran-
sit from incorrect to correct—the person simply responds,
and the response is classified as incorrect or correct. In
the vast literature on dichotomous response items and re-
sponse models for them, the difficulty parameter, which lo-
cates the point of equal probability of the two responses, has
never been characterized as a transition from incorrect to
correct.

The correct generalization from the dichotomous to the
polytomous responses is that, rather than a performance being
classified in one of two ordered categories (m = 1), it is
classified in one of m + 1 ordered categories (m > 0). For
example, if a performance, say in acting, is to be classified
according to some protocol into four ordered categories, the
actor is not considered to go through a poor performance, and
then an improved performance, to finally a performance in the
highest category—indeed an actor might perform superbly at
the beginning of the play, and then tail off at the end. Then,
if the entire performance is to be assessed by a single rating,
the judge has to make an on balance judgment according
to the assessment protocol. The assessment is that of the
placing the person’s performance in one of the categories on
the trait, not how the person transitioned in getting to that
category. In their studies the acting students might improve
on the trait, just as students in schools improve their standing
on the curriculum that is taught to them, but the model does
not characterize this improvement over time—it is simply an
assessment of where the person is at time of assessment, and
not how the person reached there.
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Copy the picture in Box A into Box B 

Scoring used: 

2. all parts recognisable in shape, size, position and orientation. 

1. most parts recognisable in shape, size, position and orientation 

0. none or few parts recognisable in shape, size, position and orientation.

Copy the picturt e in Box A into Box B

coring used:

. all parts recognisablea in shapa e, size, position and orientation.

. most parts recognisaba le in shapa e, size, position ana d od rientation

. none or few parts recognisaba le in shapa e, size, position and orientation.

FIGURE 2. An item where the second threshold adds substantively to the first threshold.

Second, for this class of models, the probability of a re-
sponse in any category is a function of all thresholds. This can
be seen by observation that the denominator of Equation 4 is
a function of all thresholds—it is a sum of all the numerators.
Because of this feature, Thissen and Steinberg (1986) also
referred to this class of models as divide by total models.
Because the probability of a response in any category is a
function of all thresholds, it means that if the third threshold
is changed in Figure 1, then the probability of a response in
the first category is also changed. This feature is incompati-
ble with the idea that the model characterizes transitioning
from one category to the next—if it did, the probability of
transitioning across the first threshold from the first to the
second category would not depend on the location of the last
threshold.

Third, all threshold parameters in Equation 4 are refer-
enced to the same origin and therefore cannot be conceptu-
alized as successive steps. The thresholds are, for example,
like the markings of a weight scale—one does not describe
the point of 80 kg as a step which is smaller than the step of
81 kg. Moreover, in classifying a person according to weight,

one does not characterize how the person reached that
weight—a young person might have grown from a smaller
weight to the present one; an older person might have shrunk
from an earlier weight to the current one. By analogy to these
types of measurement, the PRM model simply characterizes
the probability of being classified in one of the categories,
defined by the thresholds, as a function of the location θ of a
person on the trait—it does no more and no less.

In arguing that it was incompatible with the PRM, Mole-
naar (1983) called the step metaphor seductive; Ostini and
Nering (2006) note explicitly that this metaphor is not com-
patible with the model. Penfield also refers to Tutz (1990) as
providing a motivation for the step metaphor. However, the
model that Tutz develops is a genuine sequential processing
model and is not one of the adjacent category models such
as the PRM. Placing Tutz’s example with the other models in
the use of step confuses the processes behind the different
models.

Given that the item parameters (thresholds) are not
steps, how can they be interpreted? They are interpreted
exactly as they are in the dichotomous case—as difficulty
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parameters. This is elaborated briefly below. There are, as
Penfield indicates, dichotomous responses at the thresholds,
but, as already noted above, they are latent, never observed. In
addition, because there is one observed response in one cate-
gory only, these latent responses are not independent—they
are constrained. The constraint is an implied Guttman struc-
ture on the latent responses at the thresholds. Thus, if the as-
sessment in the example of Figure 1 is in category 2 (a score of
1), the implication is having exceeded threshold 1 but neither
threshold 2 nor threshold 3; likewise, if an assessment is in cat-
egory 3 (a score of 2), the implication is having exceeded both
thresholds 1 and 2, but not threshold 3. And elegantly, if the
response is in the first category (a score of 0), the number of
thresholds exceeded is 0; if the response is in category 4 (score
of 3), all three thresholds have been exceeded. This charac-
terization reflects the severe constraint that order places on
the latent, dichotomous, responses at the thresholds.

Because the successive categories are intended to be or-
dered in the sense that they successively reflect more of the
trait, the implication is that the thresholds which define the
boundaries of the categories are not only expected, but re-
quired to increase in difficulty. However, and importantly in
the PRM, the empirical evidence can be to the contrary—
that is, the threshold estimates can be reversed. This rever-
sal is a property of the assessment data, and is relevant to
understanding whether the rating or partial credit scoring—
whichever is relevant—is working as intended. Figures 2 and
3 below show two items with partial credit in the assessment
of numeracy, the first with ordered and the second with re-
versed threshold estimates. The figures also show the latent,
dichotomous response probability curves at the thresholds.
These are real items that were used in the assessment of
elementary school children in Western Australia and the re-
sponses were analyzed using the PRM (van Wyke, 2003). The
parameters of the two items are on the same scale.

Consider now the items and their scoring structure more
closely. In Figure 2, a drawing with all parts recognizable . . .
(score of 2) reflects greater understanding on the variable
than most parts recognizable . . . , (score of 1) and reflecting
this property, the second threshold estimate is more diffi-
cult than the first one. On the other hand, in Figure 3, the
achievement of the score of 3 does not represent a greater
value on the trait than scores of 2 or 1. It is evident that if
a student draws one column correctly, then the student will
almost certainly draw all correctly—the successive scores
reflecting more columns drawn correctly do not reflect addi-
tional standing on the variable—the additional scores are for
an equivalent performance for all responses and because of
the constraint on responses, the successive thresholds appear
easier than the first one. At best, having students complete
more than one column is a waste of their time in the testing
situation. In both cases the student responding does not go
through any steps on an implied continuum in achieving the
final performance. In the step conceptualization, it would be
said that taking step 3 is easier than taking step 1; however, it
is clear that these so called steps are essentially of equal dif-
ficulty and further reinforces that the step conceptualization
is not compatible with the model.

Two points are stressed regarding Figures 1–3. First, they
represent the probability distribution of the response of
a single person at any location on the trait, and not of
the distribution of persons in the sample among the cate-
gories. Thus, Figure 2 shows that a student located between

approximately −4 and 0 logits, is most likely to obtain a score
of 2, a genuine partially correct response. On the other hand,
Figure 3 shows that, for a student located between approxi-
mately −3.9 and −1.5 logits, in which scores of 1 and 2 have
their own highest probabilities, simultaneously both 0 and
3 have a higher probability. Effectively, the response is di-
chotomous. In general, reversed threshold estimates provide
evidence of some kind of problem with the empirical ordering
of the categories which in turn provides an opportunity to
improve this important feature of an item. It is stressed that
the source of the problem is not provided by the estimates
themselves, nor simply by the frequencies in the data—for ex-
ample, that some frequencies are very small. In some cases,
small frequencies, which give large standard errors of the
threshold estimates, may be an explanation, but it is not nec-
essarily an explanation. In general, it needs to be considered
whether there is a problem with the definition, operation or
some other aspect of the categories, and this can only be done
by considering the empirical set-up.

Second, a typical test of fit which compares expected and
observed frequencies of correct responses is irrelevant in de-
ciding that reversed thresholds reveal a problem with the
empirical ordering of the categories. It is irrelevant because,
for such a purpose, the argument is circular: the frequencies
in the data are used to estimate the parameters which in this
case lead to reversed threshold estimates, and then these
same reversed threshold estimates are used to obtain the
expected frequencies. It may be that reversed threshold esti-
mates are part of a general problem with an item which leads
to misfit; however, fit does not imply that reversed thresholds
are not a problem in the empirical ordering of the categories.

Penfield’s Figure 5B shows a figure similar to Figure 3,
yet the reversed thresholds (in his terminology, steps) go
unremarked.

The same interpretation, that the threshold parameters
are not steps, can be made with the generalized partial credit
parameterization (Muraki, 1992). On the other hand, there is
a major difference between the PRM (partial credit or rating
scale parameterization) and the generalized parameteriza-
tion. Unlike the PRM, the generalized model has different
discrimination parameters at the thresholds for different
items. Penfield refers to models with different discrimina-
tions as more flexible, implying that such models are better
than those less flexible. However, that view is not universal.
That flexibility is better comes from the statistical paradigm
of modeling data, where the task is to find a model that fits the
data, not from a measurement paradigm which requires the
data to meet specified conditions (Andrich, 2004, 2013b). In
interpreting the parameters of the PRM, Andrich (1978) be-
gan with different discriminations for the latent responses at
the thresholds, and showed that if they were made equal then
the model became a Rasch model in the sense that it had suf-
ficient statistics for its parameters. Muraki’s reintroduction
of different threshold discriminations destroys sufficiency.
The sufficient statistic for each person is simply the total
score across items, which can be seen from the coefficient j
of θ in Equation 3. An advantage of the model with sufficient
statistics is that the item parameters can be estimated
independently of the person parameters, and vice versa,
and there is a compelling measurement perspective that re-
sponses should not only be substantively valid, but also fit the
relevant member of the Rasch class of models (Rasch, 1961;
Wright, 1997). Then the item parameter estimates, within
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Look at the pets on show. Finish the pet graph using 

the numbers from your chart.  

Scoring used: 

3. All columns correct 

2. Two columns correct 

1. One column correct 

0. No columns correct 

Look at the pets on show. Finish thtt e pet graph using

the numbm ers from your chart.  

Scoring used: 

3. All columns correct

2. Two columns correct

1. One column correct

0. No columns correct

FIGURE 3. An item where the second and third thresholds do not add substantively to the first threshold.

the relevant frame of reference, can be taken to characterize
the items independently of the person distribution. On the
other hand, in the models with different discriminations at
the thresholds, the item parameter estimates are entangled
with the estimated distribution of person parameters.

Cumulative Models
Although Penfield’s algebraic relationships for cumulative
models are also correct, not only is the step concept incom-
patible with these models, but the cumulative and the adja-
cent categories models characterize incompatible processes.
A feature of adjacent category models is that it is not possible
to combine a pair of adjacent categories without changing the
model and the relationships among all categories. Thus if two
or more categories are combined by removing a threshold,
it changes the probability of responses in other categories.
Moreover, the sum of the probabilities of adjacent categories

calculated post hoc is not the same as if the categories were
combined a priori and responses made in one of the smaller
number of categories. Anderson (1984) considers that this
property of adjacent category models is compatible with the
way assessments work in the social sciences.

On the other hand, in cumulative models combining adja-
cent categories, either a priori or post hoc, does not change
the probabilities of outcomes in all categories. To achieve
this feature, there is only a single latent response process for
the distribution among all categories, and this distribution is
divided into categories post hoc. Such a distribution is shown
in Figure 4. The process described by Anderson that is rele-
vant to this model is group continuous, for example, income
in dollars: 0–2,000, 2,001–3,000, and so on (Anderson, 1984,
p. 2). Anderson considers that this property of cumulative
models is not compatible with the way assessments work in
social sciences. Figure 4 shows a single, continuous latent dis-
tribution around the difference between the person location
θ and the item location δ (θ − δ). The figure also shows three
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FIGURE 4. The response process corresponding to cumulative models.

thresholds, superscripted with an asterisk (*) to distinguish
them from the thresholds in the adjacent category models.
Then if P ∗

i j (θ) is the area under the curve from b∗
i j to ∞,

a cumulative probability, and the total area under the curve
is given byP ∗

i0(θ) = 1, then the probability of a response
in any category j = 0, 1, 2..., m is given by the successive
differences

Pi j (θ) = P ∗
i j (θ) − P ∗

i( j+1)(θ); Pim(θ) = P ∗
im(θ). (7)

This class of models, based on Thurstone and Chave (1929),
was developed further by Samejima in the psychometric
context (1969, 1997). Because of the structure of Equa-
tion 7, Thissen and Steinberg (1986) referred to this class
of models as difference models. Clearly, in this model, its
thresholds are always ordered even if there is evidence from
the PRM that the empirical ordering of the categories is
malfunctioning.

There is no concept of step in this model. The use of a
cumulative model for items such as those in Figures 2 and 3,
and in all assessments, must be merely descriptive without
concern for any processes behind the responses. To be ex-
plicit, the model specifies the probability that a person will be
classified above any threshold, that is, assessed in a category
or in any category above it, and not in a specific category. This
does not seem consistent with performance assessment—
judges locate a performance in one of the categories, not in
and beyond any particular category. For example, in the item
in Figure 2, the model specifies the probability that a person
drew figures in which all parts were recognizable (score 2)
and then the sum of the probabilities where all parts were
recognizable and where most parts are recognizable (score
1), and so on. In Figure 3, it models the probability that a
person had all three columns correct (score 3), the sum of
the probabilities that the person had three and two columns
correct (score 2), and so on. The characterization of these

cumulative probabilities does not seem compatible with how
a judge makes a decision.

In the first two stages of the development of the PRM for
items with ordered categories, which were based on the re-
quirement of sufficient statistics, the item parameters had
no substantive meaning (Rasch, 1961; Andersen, 1977). In a
third stage, and beginning with the rating parameterization,
meaning was given to them in terms of the familiar thresh-
olds as difficulties on the continuum and discriminations at
the thresholds (Andrich, 1978). In a fourth stage, the pa-
rameterization was generalized so that different items could
have different thresholds (Masters, 1982). At the time it
seemed difficult to appreciate the PRM’s two distinctive fea-
tures broached above: first that adjacent categories could not
be combined arbitrarily; second that it was not only possible
to have reversed threshold estimates, but that they implied
that the empirical ordering of the categories violated the
intended ordering. Both these features contrasted explic-
itly with those of the established cumulative model, seemed
counterintuitive, and generated debate (Adams, Wu, & Wil-
son, 2012; Andrich, 1995a, 2013a; Jansen & Roskam, 1986). It
seems that, in the context of these contrasts between the es-
tablished model and the radically different properties of the
new model, the irrelevant but seductive step metaphor was
imagined.

Penfield’s use of the step metaphor has provided the op-
portunities, first to explain in detail why this metaphor is
incompatible with the adjacent and cumulative types of mod-
els; second to contrast the processes implied by models which
are articulated further in Andrich (1995b), third to indicate
that the process behind the adjacent category models is the
one consistent with assessments in ordered categories, and
finally to demonstrate that when the adjacent category model,
the PRM, is used, the empirical ordering of the categories can
be studied, understood, and where necessary improved to be
consistent with the all-important intended ordering.
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