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A Rasch Primer: The Measurement Theory of Georg Rasch

Abstract

This is an introduction to the measurement philosophy of Georg Rasch.  It has three sections: 
measurement, models, and methods.  The most popular motivation for using Rasch’s models is that 
they are extraordinarily easy to use, compared to the Item Response Models (IRT).  The Part III 
Methods section will show the arithmetic, clearly exposing just how easy the analysis phase of Rasch 
analysis is.

The Part II Models section introduces a variety of models that have what it takes to be a Rasch 
model.  This diversity of expressions is another good argument in Rasch’s favor.  These include the 
well-known dichotomous, partial credit, and rating scale models.  Others, like the multi-faceted 
models, are less well known but can be very useful.  Some, like Fischer’s linear logistic test models 
(LLTM), are better known outside the US than inside.

Part I Measurement concentrates on the most compelling motivation for using Rasch’s models: 
following Rasch’s principles and applying his methods leads to measurement, and measures are the 
appropriate fodder for analysis.  It attempts to draw, as sharply as possible, the distinction between 
Rasch measurement and the more complex IRT models, without criticizing IRT directly.  In 
contrast to IRT, Rasch’s interest was how best to extract all information from the data relevant to 
the construct of interest, not how to reproduce the data most precisely. 

Overture

This apology of the measurement theory of Georg Rasch is arranged in three movements with 
different tempos (measurement, models, and methods) but a recurring theme.  The Measurement 
section attempts to show what Rasch meant by the word and to draw as sharply as possible the 
distinction between Rasch measurement and the more complex Item Response Models (IRT), 
without criticizing IRT directly.  To re-enforce that distinction, we will follow the traditional Rasch 
notation reasonably well, when equations are unavoidable.  We will also reserve the term IRT for the 
models that are not Rasch models, because that term seems to describe the intent of those models, 
with their focus on fitting the data, while the older term latent trait models fits better with the Rasch 
perspective, with its focus on the attribute to be measured.

Our concern throughout is the efficacy of Rasch measurement, how it works under ideal conditions, 
which can hardly be controversial.  When the data conform to Rasch’s principles, i.e., the data are 
based on agents that are equally valid and reliable and are not subject to interference from extraneous 
attributes of the objects, the models have the power to encompass and extend the best of Thurstone 
and Guttman.  This leads to measurement, as most understand the word, and sets the stage for the 
more important tasks of taking and analyzing measures. 

Most of the discussion surrounding Rasch has focused on effectiveness, how the models function 
when confronted with real responses from real people to real tests, questionnaires, surveys, checklists, 
and other instruments, some put together with little or no thought for their suitability for measure-
ment.  In this very practical world, Rasch analysis seems to mean running data through Rasch cali-
bration software.  The conclusion that Rasch models are robust, i.e., do pretty well in this real world, 
should not be taken as justification to continue doing what we’ve been doing.2



There are two commonly cited motivations for using Rasch’s models.  The most popular being 
they are extraordinarily easy to apply, compared to the IRT models.  Useful results can be gotten 
with relatively small samples and the estimation algorithms converge readily unless the data are 
pathologically bizarre.  Part III of this treatise will show the arithmetic, clearly exposing just how 
easy Rasch analysis is to use.

This is our first trouble with Rasch: solutions to measurement problems are too simple to be worth 
publishing.

Part I focuses on the more compelling motivation for using Rasch’s models: following Rasch’s 
principles and applying his methods lead to measurement, and measures are the appropriate raw material 
for analyses.  We will note again, and emphasize repeatedly, that applying Rasch’s methods means 
more than running data through a Rasch calibration program.

This is our second trouble: building instruments that meet Rasch’s requirements is hard.

Part II describes a variety of models that have the prerequisites to be Rasch models.  Some of these, 
dichotomous, rating scale, and partial credit, are well-known and widely used.  Others, e.g., 
multi-faceted models, are less well known and should be more widely used.  Some, e.g., Fischer’s 
linear logistic test models (LLTM), are widely known and used outside the US.

There is nothing new here; the majority of the entries in the reference list are between 1960, when 
Rasch’s Probabilistic Models for Some Intelligence and Attainment Tests (Rasch, 1960) was published, 
and 1980, when it was republished shortly after Rasch’s death.  There is more here about rocks, 
archery, and oral reading than about multiple-choice items. We attempted, not at all successfully, to 
avoid mathematics, but those seeking rigorous explanations of estimation methods or fit statistics 
will need to look elsewhere (e.g., Smith & Smith, 2004; Fischer & Molenaar, 1995).  This is not 
the manual for any Rasch computer package; it will not explain what WinSteps, RUMM, ConQuest, 
or LPCM-WIN is actually doing.  Finally, this is not a cookbook for applying a special case of IRT 
models, although we do embrace the notion that Rasch models are very special indeed.

Part I: Philosophy and Theory of Measurement

Measurement theory refers to a body of principles, ideas, rules, and techniques for quantifying some 
interesting aspect of an object.  Typically, the intent is to make inferences based on the measures 
but analysis is a distinctly separate process from measurement.  Measurement does not care if we 
simply collect and file the measures or use them to achieve world peace.  It is concerned with the 
very narrow problems of specifying the group of objects, defining the interesting aspect of the 
objects, determining relevant evidence, and transforming that evidence into a measure.  In simple 
words, it is about building rulers, like the one in Figure 1.  The numbers themselves are meaningless 
until associated with objects we are interested in and mileposts that mean something.
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°C Fish
Beef,
Veal Sugar Water

175    Burnt Sugar 
   Brown Liquid 
   Clear Liquid 
       
       

150    Hard Crack   
       
       
   Soft Crack   
       

125    Hard Ball   
   Firm Ball    
   Soft Ball   
   Thread   
       

100      Boils 
       
       
       
       

75        
  Well done     

Well done Medium      
Medium  Medium rare     

Medium rare Rare     

50 Rare       

Figure 1:  Celsius Temperature Guidelines

In psychological and educational measurement, the evidence comes from the object (e.g., person) 
interacting with the agent (e.g., item).  A set of agents comprise an instrument (e.g., test.)  The 
phrase equally valid and reliable used earlier to introduce Rasch’s requirements, represents a major 
hurdle.  In factor analytic terms, it suggests that the items all load equally on the first and only factor.  
In measurement terms, it means items that are truly interchangeable; after considering the single 
item parameter, we have absolutely no favorites among the items.  Constructing instruments and 
banks of items that can claim this level of equality is the true challenge for measurement.

Building such instruments is valuable in its own right, helping define, refine, or discredit underlying 
theoretical notions (Andrich, 2004, pp. 171-174).  Choosing the agents that we think are the best 
representatives of the idea forces serious consideration of what the idea really is and what constitutes 
acceptable evidence.  Examining the results of the interactions with objects is almost always surpris-
ing and illuminating.

Once built, those instruments provide useful, meaningful measures of the objects that are truly of 
interest, objects like students and patients.  The goal is to understand; not simply explain in the 
barren statistical sense, the item response matrix.  A perfectly fitting model does not imply 
understanding.  A stochastic model explains little beyond the state of our ignorance.  The real work 
of measurement is not in estimating the parameters of the model that fits best, but in building the 
instrument that measures best.
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If measurement is the goal, validity trumps reliability.

If Rasch measurement is not a special case of IRT, what is it?

Rasch Measurement is to Item Response Theory as Experimental Design is to General Linear 
Models.  The math is easier and the inferences stronger but it takes more work and careful planning 
up front.  Fisher (1947) shows us how to find cause and effect, the Holy Grail of science, given an 
appropriately designed experiment.  Similarly from the Rasch perspective, the solutions for many 
vexing measurement problems are obvious and computationally trivial, given an appropriate 
instrument.  Thurstone told us what the Holy Grail of measurement looks like; Rasch tells us how 
to find it.

IRT models were developed from the time-honored statistical perspective of data-fitting and model 
building.  Parameters were added if they reduced the unexplained variance significantly.  Items are 
weighted to minimize the difference between the model predictions and the observed item responses.  
We should not be concerned if the item weights differ depending on the sample that was used to 
obtain them or even if the items are ordered differently for different people and different groups.  
That is the world as it was given to us and we have done our best to faithfully reproduce the observed 
item responses. 

For Rasch, reproducing the observed item responses is not measurement.  The construct is 
paramount, defined operationally by the items.  Any empirical weights will change the definition 
from the one provided by the designers of the instrument.  If different selections of data redefine the 
construct, through the empirical weights, we no longer have a firm grasp on what we are trying to 
measure.  If different subdivisions of the sample give different orderings of the items, then we do not 
know what more or less means.  A measurement model should be sounding alarms in this 
situation, not adapting of it.

If the instrument does meet Rasch’s requirements, then we know which way is up and can focus 
on studying relationships, monitoring progress, establishing effectiveness, and perhaps determining 
cause and effect.  We can be less preoccupied by the mathematics of IRT analysis.  Our focus can be 
the validity and utility of the measures rather the stability and efficiency of our algorithms.

Rasch has laid out a roadmap for building instruments, defining constructs, and making 
measurements.  The process should be theory-driven and data-verified.   When we build instruments 
for measuring based on a solid substantive theory, the Rasch model provides a rigorous structure for 
collecting and evaluating evidence related to that theory.  If the items, tasks, or elements comprising 
the instrument do not behave as expected, we have learned something, perhaps about how to write 
better items, perhaps about the limits and limitations of our theory.

Building instruments according to Rasch’s principles not only makes life simpler for 
psychometricians, it is a powerful tool in developing theories and doing science.
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If you want to do measurement, you have to do Rasch.

For its adherents, Rasch measurement is axiomatic: self-evident because this is the way it must be or 
it’s not measurement: 

The calibration of the agents must be independent of the objects used and the measurement of the 
objects must be independent of the agents used, over a useful range. 

This is not an unchecked assertion, but a rational criterion by which one can evaluate data in the 
context of a theory.  From the model follow consequences.  If the observed data are consistent with 
the anticipated consequences, we have met the conditions of fundamental measurement and can 
treat the results with the same respect we have for measures of, say, mass, heat, distance, or duration, 
which, like reading fluency or art appreciation, are not real things but aspects of things.  

What is measurement?

Volumes have been written on the meaning of measurement (Klein, 1975; Fisher, 1992; Tavernor, 
2007).  While we tend to think the physical sciences had it easy, weights and measures were not 
standardized until the end of the eighteenth century; local rulers religiously defended their own 
systems and the debate about whether measures were to be based on human body parts, the one-
second pendulum at sea-level near Paris, the circumference of the Earth around the equator, or the 
circumference of the Earth around the poles figured in the French Revolution (Travernor, 2007).

As a jumping off point, we will take measurement to mean the process of quantifying an aspect of an 
object in a way that is general, reproducible, and amenable to analysis.  General means there is a broad 
class of objects and of agents over which comparisons are valid and interesting.  Reproducible means 
competent observers using appropriate instruments, perhaps of their own devising, will obtain 
statistically equivalent measures.  Amenable to analysis means standard statistics (e.g., means, 
variances, differences) will suffice.

The process of measurement begins long before any data are collected.  The starting point is a 
notion about an aspect of a class of things we want to understand better.  It might be, for example, 
an ordinary idea like hardness, the quality of being firm or solid.  This description, while completely 
reasonable and perhaps meaningful, does not say much about how one might measure it.  Attempts 
to quantify the idea of hardness led to more functional definitions: e.g., the degree to which the 
surface of a material may be scratched, indented, abraded, or machined.   

This notion of hardness first produced the Mohs scale, which relies on ten materials (Table 1) that 
are used to determine what scratches what.  A material (e.g. garnet) that scratches quartz and 
is scratched by topaz has a Mohs scale value between 7 and 8.  The Mohs’ scale is useful for 
distinguishing diamonds from glass but not precise enough to differentiate grades of steel.  These 
results are certainly reproducible and general but are nothing like an interval scale.  The distance 
between 9 and 10 is orders of magnitude larger than the distance between 1 and 2.  These are 
(ordered) categories, not measures.
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Table 1:  The Ten Substances of Mohs Scale of Hardness

Scale of Hardness 
Substance Mohs Shore Units  
Talc 1 1 
Gypsum 2 2 
Calcite 3 9 
Fluorite 4 21 
Apatite 5 48 
Orthoclase 6 72 
Quartz 7 100 
Topaz 8 200 
Corundum 9 400 
Diamond 10 1500 

Later efforts (e.g., Brinell, Rockwell, Vickers) attempted to standardize the agent used to create the 
scratch.  There are several Brinell scales and more than a dozen Rockwell scales with different loads 
and shapes of hammers, intended for materials with different properties and in different ranges of 
hardness.  

All these techniques have the drawback that the values reported are specific to the load, shape, and 
duration.  Brinell values are typically reported as, e.g., HB 10/1500/30, which means a Brinell 
hardness using a 10 mm diameter sphere under 1500 kilograms load for 30 seconds.  The values 
from any of these methods and scales could be compared only to those obtained by the same method 
under the same conditions, i.e., took the same form of the test.

The scleroscope involved dropping a diamond-tipped hammer inside a glass tube from a fixed height 
and measured the height of the rebound on an arbitrary scale, which defined 100 Shore units as 
the average rebound from pure hardened high-carbon steel.  Later, the scleroscope was refined to 
measure the energy loss from the impact rather than height of the rebound.  The percent of energy 
loss was more general than the height of rebound and it can be related (linked) to the values 
determined by the indentation techniques as well as the Mohs scale (see Table 1.)  This is an attempt 
to free the measurement from the specifics of the situation by applying some basic Newtonian 
physics to control or eliminate effects due to the mechanics of the device.  The result was a scale that 
can be used as a measure.

The issue of unidimensionality does not even come up in this discussion.  The topic is hardness.  
It was not confused with density, brittleness, luster, tensile strength, color, or any other aspect that 
these materials might share and might be interesting.  However, if someone encounters a substance 
that scratches topaz (Mohs 8) and is scratched by quartz (Mohs 7), everyone would be back to the 
drawing board.  

This process of development confronts many of the same issues that were expressed in Thurstone’s 
quest for absolute scaling and Guttman’s scalogram analysis.
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Guttman
Louis Guttman (1916  –1987) in 1944 proposed a method of scaling for psychological attributes like 
attitude and preference (Guttman, 1950).  An ideal Guttman scale, like the Mohs hardness scale, 
has no random or error component.  When the items are ordered by scale location, a person will 
endorse every item up to the total score and will refuse to endorse any item at a higher location.  All 
of a person’s responses can be reconstructed exactly from the total score.  Where possible to achieve, 
this scale ensures a unidimensional instrument.  The significance of total score as the summary of 
performance was a powerful insight.

Thurstone
Much of the seminal work on scale construction, anticipating fundamental measurement, was 
provided in the 1920’s by L. L. Thurstone (1887–1955).  He proposed several scaling methods that 
are still useful, including the methods of equal-appearing intervals, of successive intervals, and of paired 
comparisons.  However, Thurstone’s most telling insight may have been when he stated a requirement 
for fundamental measurement: 

Within the range of objects for which the measuring instrument is intended, its function must be 
independent of the object of measurement.  (Thurstone, 1928, p. 547.)

Thurstone also suggested that the measurement of an object should be independent of the 
instrument to the extent that it should be possible to omit some items without disturbing the 
measurement (Thurstone, 1926, p. 446).  These statements seem to herald Rasch’s work thirty years 
later.  

Rasch
Georg Rasch (1901–1980) was a Danish mathematician who studied statistics with Sir Ronald  
Fisher and with Ragnar Frisch, a Norwegian Nobel laureate in economics.  From Frisch, Rasch 
learned confluence analysis, similar to Thurstone’s factor analysis; from Fisher, he learned maximum 
likelihood estimation and sufficiency.  Sufficiency in particular had a dramatic impact.  In Rasch’s 
words:

What is left over when a sufficient estimate has been extracted from the data is independent of the 
trait in question and may therefore be used for a control of the model that does not depend on how 
the actual estimates happen to reproduce the original data.  This is the cornerstone of the probabilistic 
models that generate specific objectivity.  (Quoted by Wright, 1980, p. xii.)

Rasch’s interest was how best to extract all information from the data relevant to the construct of 
interest and not how to reproduce the data most precisely.

In 1951, Rasch was asked to analyze data related to the effect of extra instruction for poor readers.  
The students had been given oral reading tests over a number of years; scores that were recorded 
included the number of words read in a fixed length of time.  Texts of increasing difficulty were used 
on successive occasions; hence, there were no connections between texts or between occasions.  There 
seemed no sensible way to compare the scores from one text on one occasion to the scores from 
another text on a different occasion (Rasch, 1977, p. 63).
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The Vanishing Person Parameter

Rasch’s background in mathematics and statistics and his interest in sufficiency suggested a simple 
expression and process: the probability that a person reads a specific number of words from a text 
follows a Poisson distribution with one parameter for the person and one parameter for the item:

1.	 p{ai}e‒

ai !
 i

ai


ai
i

where ai is the number of words read,  is the ability of person  to read quickly, and i is the 

easiness of text i. 

Rasch (1960, pp. 13-33) then derived:

p(ai , aj ), joint probability of scores ai and aj for person  on texts i and j, 

p(ai  aj ), probability for the total of the two scores (ai  aj ), and 

p(ai  , aj   ai  aj ), probability of the two scores conditional on the total.

The conditional probability of the two scores given the total was the key for Rasch.  It came out to be:

•	 p(ai  , ai   ai  aj  ) (ai  aj  )ai , aj 
aj

j
ai

i

i     j
ai aj( )

Using Fisher’s maximum likelihood, Rasch derived the estimator, which is astonishingly simple, for 
the relationship between the text parameters:

2.	   i    jln(ai  aj ).

The relationship is estimatedi by the ratio of the counts regardless of what person is used.  With this 
result, Rasch was able to collect data from totally new samples that connected all the texts and to use 
those estimates to evaluate the progress of the original sample.

When Rasch described this work to Frisch in a casual conversation, the Nobel economist remarked 
repeatedly, the person parameter has completely vanished.  Rasch repeatedly responded, yes, it has, and 
continued to explain what they had concluded about remedial reading instruction.  It took Rasch 
several days to appreciate what had struck Frisch immediately: separating the two sets of 
parameters suggested an important new class of models with simple sufficient statistics. (Rasch, 
1977, p. 66)  Expression (2) has all the properties of fundamental measurement Thurstone was 
seeking.

Specific Objectivity, Sufficiency, and Separation

Rasch chose the term specific objectivity to characterize his new models: objective because they 
allow comparisons between items without reference to the people and comparisons between people 
without reference to the itemsii; specific to distinguish it from all other uses of objective but also to 
emphasize that this property is not demonstrated once and for all for all potential situations.  

•

•

•
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Separation, sufficiency, and specific objectivity are the mathematical, statistical, and measurement 
faces of Rasch models.

Phrases like instruments that conform to my principles and tests built using my methods are sprinkled 
throughout Rasch’s writings.  These take it for granted that we know what his principles are and what 
his methods were.  

The Rasch Principle

The principle is specific objectivity.  If it holds, then any reasonable selection of people will provide 
the same estimate of the comparison between any two relevant items and any relevant selection 
of items will provide the same comparison between any two appropriate people.  And again, the 
essential role of sufficiency is to allow consistent estimators of the model parameters, and after 
the sufficient statistics have been extracted, all that remains should be noise.  If it is, we have 
measurement; if not, we have a bigger research study than we thought.

The Rasch Method
Rasch’s method was to 
(1)	 design agents to provoke valid responses, 
(2)	 extract the sufficient estimators, and 
(3)	 examine the remains for any structure.  

Often we rush through the first by having an inadequate theoretical basis, forget about the third 
because we are afraid of the answer, and shortchange the second by not exploiting the sufficient 
statistics.  If we get through these steps and there is no structure, we can proceed to making and 
analyzing measurements.  If there is structure, relating to, say, subgroups, individuals, item types or 
item content, we need to revisit the theory, reconsider the observations and the instrument, perhaps 
revising or discarding items, or rethink the range of individuals for whom the instrument is 
appropriate.  Reconsider anything and everything except the Modeliii.

The problem at hand in the oral reading exampleiv was to determine the effect of extra instruction for 
poor readers.  If we can measure, in the strictest sense, reading proficiency, measurements could be 
made before the intervention, after the intervention, and perhaps several points along the way.  Then 
the analysis is no different, in principle, than if we were investigating the optimal blend of feed for 
finishing hogs or concentration of platinum for reforming gasoline.

In order to obtain evidence about reading proficiency, a parent or teacher might listen to the student 
read, commenting on errors and flow.  There are many other possibilities for evidence that might be 
collected, perhaps having students retell the story in their own words, or respond to multiple choice 
items about main ideas, vocabulary from context, literary devices, sequence of events, use of imagery, 
topic sentences, etc.

There very well might be people for whom reading speed is not a reasonable indicator of proficiency.  
For advanced readers, for students with vision or hearing impairments, or students reading in a 
second language, reading faster might not imply reading better and pronunciation errors may not 
imply lack of understanding.  Or perhaps it works in Danish but not Mandarin.
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Once we are satisfied that we have chosen appropriate indicators of the construct for our class of 
objects, we could begin to quantify the activity by counting the words read rather than just 
listening and commenting.  In order to standardize, we could fix the amount of time allowedv.  
Students reading from the same text for the same length of time could be ranked by the observed 
counts of words read.  These counts are not measurements: without further refinement, the counts 
can not be compared to others based on other texts or other time intervals.  

These deliberations are basic instrument development and hardly invented by Rasch.  They are 
recounted here to emphasize the crucial role of the instrument and the rationale that supports it.  
One can not expect to take a poorly thought-out instrument and salvage it through psychometric 
manipulations or incantations. 

Controlling the model to establish that specific objectivity holds is the center piece of Rasch’s 
method.  It is generally appropriate, when estimating the model parameters, to use all the data one 
can get one’s hands on, because larger samples mean smaller standard errors.  However, for control, 
the total collection is partitioned and the results compared every way that is a potential threatvi: high 
vs. low performers, males vs. females, fourth grade vs. fifth grade, or computer vs. paper-and-pencil 
administration.  Having done all these with satisfactory results, we still do not know if the 
relationship is independent of visual acuity, mobility, computer experience, ethnicity, type of school 
or community, language spoken at home, eligibility for free or reduced lunch, region, mother’s 
occupation, father’s education, ad infinitum.  Objectivity is specific to the threats eliminated. 

Any of the possible subdivisions of the data can be investigated, using likelihood ratio tests (Fischer 
& Molenaar, 1995), between group 2 (Wright & Panchapakesan, 1969; Wright & Stone, 1978), 
residual analyses (Mead, 1976), mean squares, weighted mean squares (Smith & Smith, 2004), or 
any number of other statisticsvii.   Rasch often did it graphically.  His work is filled with plots 
comparing the performance of groups of examinees, demonstrating the degree to which specific 
objectivity held, and identifying the instances where it did not.

Returning to oral reading, the counts of words read (like ai and aj ) and the probabilities 
(like p {ai , aj }) are person-dependent.  Raw scores in any form depend heavily on the people 
who produced them.  However, from expression (2), any effects of the people are eliminated from 
the conditional probability p(ai , aj   ai + aj ) and from the ratio (ai  aj ).  The ratio should be 
the same, within statistical limits, whether it came from a very fast reader, a very slow reader, from 
a male or female, fourth grader or fifth grader, etc.  Comparing these ratios based on different 
disaggregations of the group tested is what Rasch meant when he said “the relationship should be 
found in several sets of data which differ materially in some relevant respects.” (Rasch, 1960, p. 9)  

The process that we have gone through, albeit rather crudely, to obtain useful evidence is:
•	 What aspect of the people are we trying to understand?
•	 What evidence might we collect that would relate to the status of the people in this aspect?
•	 What groups of people do we intend to measure? 
•	 Can we reasonably expect this evidence to be valid for comparing all members of these 	
	 groups?

These are not strictly psychometric questions although the psychometrician will probably have plenty 
of advice.
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Rasch’s method to take these observations from the lowly level of counts to the lofty level of 
measures includes:

•	 Find a mathematical form that 
		  o	 is consistent with the process that generated the counts, and 
		  o	 has separable sets of parameters.
•	 Eliminate nuisance parameters from the estimation equations using the model’s 
	 sufficient statistics.
•	 Estimate the parameters. 
•	 Check that the sufficient statistics really are sufficient by: 
		  o	 Dividing up the total group, and 
		  o	 Confirming that the relationships among the parameter estimates hold for all 	
			   important subgroups.
•	 If not, revisit the theory, revise the items, reconsider the instrument.

Computers will do the calculations and there is a growing family of mathematical forms to choose 
from.  We will discuss how to do the arithmetic in Part III and will describe some of the 
mathematical forms in Part II.  The psychometrics are easy; constructing appropriate instruments is 
the hard part.

The ultimate goal of this exercise is to develop measurement scales that are as well-defined and as 
useful in the classroom and clinic as the one shown in Figure 1 is in the kitchen.  Thurstone and 
Guttman, and others, defined what measurement must be.  Rasch provides the mechanism to 
achieve it and the structure to know when we have.  It depends on rigorous development of the 
agents (items) from a substantive theory and a careful verification of performance based on data.  
When accomplished, we will have measuring instruments that we can place along side 
thermometers, rulers, and scleroscopes, no apologies needed. 

Part I Notes

iWe keep saying the relationship is estimated, not the parameters are estimated. There are an infinite number of values that 
would satisfy the relationship.  We will eventually impose some convenient constraint to resolve this ambiguity.
iiWright (1968) introduced the often-misunderstood terms item-free and sample-free to denote the two aspects of specific 
objectivity.  
iiiIt is acceptable to reconsider if we have the correct form of the Rasch Model.
ivAny statistician, Rasch undoubtedly included, would prefer to be brought into the process earlier.  Contacting the  
statistician after several years of data have been collected will likely cause grumbling.
vWe might have used the amount of time taken to read a fixed number of words.  It may be that counting the seconds is 
equally valid as counting the words, or maybe not.
viA partition is threatening if we suspect the relationships among agents or among objects might not hold and it matters if 
they don’t.
viiNo single fit statistic is either necessary or sufficient.  David Andrich
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Part II: The Family of Measurement Models

Rasch (1960) defined an important class of models.  These models are characterized by a property 
Rasch labeled specific objectivity, which depends on separable parameters and simple sufficient 
statistics.  This property allows the models to achieve a state that Thurstone, perhaps overly  
optimistic, described as absolute measurement.  The utility of this property in practice is apparent  
in the remarkably simple estimation equation for item difficulties, which does not involve the  
parameters for the sample of people used to obtain the data.

Models can be very useful, highly predictive, and completely wrongi.  The geocentric model of the 
solar system predicts nicely the days and seasons of our lives, which was adequate for gathering nuts 
and berries, following migrations of wooly mammoths, and setting school calendars, but not for 
landing probes on other planets.  Newton’s laws of motion describe beautifully everything humans 
see but do not describe the movement of satellites accurately enough for GPS devices nor explain 
why the moon stays in orbit.  The stochastic processes posited by Rasch models do not explain the 
student behavior that produced the item responses, but the models can provide structure for using 
and not misusing the information the responses contain.

In educational measurement, there may be causal explanations (instruction, perhaps?) for what 
students can and cannot do.  For the stochastic measurement model, high ability examinees pass 
easy items and low ability examinees miss hard items.  That’s hardly breakthrough thinking for the 
psychometrician nor useful information for the teacher.  But it does form the basis for measuring the 
students and the items, for defining easy and hard, for establishing what high and low ability are, and, 
at least equally important, recognizing when something is odd.

Acceptance into the Rasch family requires a model with sets of parameters that interact in a simple 
way, permitting their effects to be separated.  Simplicity is not so easy, but there are a number of 
models that qualify.  This section provides an informal introduction to some of the most common, 
unidimensional members.

The appropriate form of the model to use is determined by the nature of the observation and the 
process that generates it, not by the computer software available.  Is the process dichotomous, 
polytomous, or Poisson counts?  Are the observations independent?  Is the observation the result of 
an interaction between the object of measurement (e.g., person) and the agent of measurement 
(e.g., item) or are there other participants (e.g., judges)?  The first and third questions are easy 
enough to answer; the second may be harder.  The models discussed here all expect independence. 

Poisson Counts

The Poisson form was the first member of the Rasch family; Rasch used it in the 1950’s to analyze 
oral reading after observing the number of words read and the number of errors made.  It is often 
presented in introductory probability courses as the distribution of rare events.  A standard example 
is the number of defects in a bolt of cloth.  The probability of finding a defect at any given spot is 
small; all spots are equally likely candidates for a defect; and there is no upper limit on the number 
of spots or the number of defects.  Similarly for oral reading, the probability of misreading any word 
is small and all words are equally likely to be misread.  Perhaps more realistically, because all the 
probabilities are very small, there is no real difference among them.
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The basic model is: 

3.	 p{ai}e‒i 
ai
i

ai !

where ai  is the count observed, and, in our case, i = i  , where, in Rasch’s original study,  is 
the proficiency of the person at reading aloud, and i is the easiness of the passage to be read. 

This expression yields the estimation equation for the relationship of two passages:

4.	 i  j ln(ai / aj ).

As a Rasch model, the Poisson has been successfully applied to counts of errors made in oral reading 
(Rasch, 1960), of errors of various types in written essays (Andrich, 1973), of number of words read 
in a given time, of time taken to complete a task, of points scored in various games, and variety of 
cases where the score was a count of events with no definite upper limit.  Generally, the number of 
trials (e.g., words that might be read or points that might be scored) is large compared to the number 
of events (e.g., words actually read, mistakes made, or points scored).  Some of the basic equations 
were presented in expressions (1) and (2) of Part I; all the details are in Chapter I of Rasch (1960).

Dichotomous Rasch Model

The most familiar Rasch model, the one most people mean when they say The Rasch Model, is for 
dichotomous data, i.e., questions that are scored right or wrong, yes or no, agree or disagree, checked 
or not checked, present or absent, hit or miss, 1 or 0.  This model may be compared to shooting an 
arrow at a simple bull’s-eye.

The model asserts the probability of hitting the target is determined solely by the archer’s 
bowmanship Bv and how hard the target is to hit, its difficulty i.  The probability of a hit is then 
simply:

5.	 pi (hit  B ,i )                  .
B

B  i

The probability of a miss is (1 – p):

6.	 p(missi   B , i)                  .
i

B  i

Obviously, we cannot grab any two numbers out of the air and shove them into expressions (5) and 
(6) and expect to come away with a sensible probability of anything.  The ratio B /    i defines the 
odds of the person winning over the item and, incidentally, B and     i could be viewed as the odds 
versus a standard agent or object respectively.  Ultimately, we would like to have good estimators for 
both B and     i.  That is where we are going now.

If we consider a two-target contest, there are only four possible outcomes for person v: hit both 
targets, miss both targets, hit the first and miss the second, and miss the first and hit the second.  
Probabilities of these four outcomes, assuming the two shots are independent, are shown in Table 2. 
The upper right cell is the probability p10 of scoring one out of two by hitting the first target only; 
the lower left is the probability p01 of scoring exactly one by hitting the second target only.  14
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Table 2:  The Four Outcomes from a Two-Target Test

There are two ways of scoring 1 and the probability of scoring exactly 1 unconditionally is the sum 
of the separate probabilities, p(r=1) = p10p01.  Finally, expression (7) is the probability of hitting 
target 1 and missing target 2, given a total score of 1:

7.	 p(10  r1)                                                  .
p10

p(r1)
p10

p10 p01

2

1 2

If we know that you hit one of the targets, this is the probability that it was target 1 that you hit.  
As with expression (2) for the Poisson, the person parameter has completely vanished.  

Connecting the model to the data

The counts needed to estimate the probabilities in Table 2 can be obtained by administering the 
two-item test to any pack of archers we find in the forest and counting the number of people who 
land in each of the four cells.  The magic, elegance, power of Rasch’s solution is that it does not 
matter whom we pick to take the test or how the person parameter is distributed in the sample.  
The relationship between the items is the same regardless of whom or what the people are. 

Changing from i to Di to indicate estimates rather than parameters, the relative target parameters 
can then be estimated with:

8.	 p(10  r1)                                  ,
n10

n10n01

D2
D1 D2

where n10 is the number of people hitting the first but missing the second and n01 is the number 
missing the first but hitting the second.  
 
Then, with a little rearranging:

9.	            .
n10

n01

D2

D1 	  

A variety of conditions could be imposed to resolve the ambiguity in (9), e.g., D1=5, or D2=23, or 
D1D2=1.  All would yield equally correct and usable solutions .
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Expression (5) is not the form most people are accustomed to seeing for The Rasch Model.  It is more 
common and more useful, but slightly messier, to express the parameters in logits:   ln(B) and 
  ln(     ).  Logits are the units most amenable to analysis; relationships appear as differences 
rather than ratios.  Expression (5) then becomes the familiar:

10.	 p(xi1   , i )                                  ,e 

ie  e
e  i

1e  i

And expression (9) for the relationship between two items becomes the difference:

11.	 d2  d1  ln(n10 )ln(n01 ).

Again, we need a constraint to resolve the ambiguity; the most common one is d1 d2 0,  
leading to estimates for the item parameters of a two-item test:

12.	 d1   d2                     .
ln(n01 / n10 )

2

When administering the test to obtain the data needed to estimate the cells of Table 2, any 
convenient sample of people can be used.  For purposes of expressions (9) and (12), which compare 
item 1 to item 2, it does not matter at all how the people are distributediii.  All that matters is that 
they took the test and that their responses conform to the model.

Expression (7) is another simple demonstration of specific objectivity, for a test with two 
dichotomously scored items.  What was required to arrive here was, first, an appropriate collection 
of items and, second, a mathematical model of the situation (expression 5 or 10) that described the 
data and that involved sets of parameters that could be separated.  Separating the parameters led to 
a simple sufficient statistic for the person parameter, and made it possible to eliminate all influence 
of the sample from the estimation equation for the item parameters.

Polytomous Rasch Models

For many testing situations, simple zero-one scoring is not enough and it is not appropriate to 
assume Poisson-type counts.  Polytomous Rasch models allow scored responses from zero to a 
maximum of some small integer m.  The integer scores must be ordered in the obvious way so that 
responding in category k implies more of the attribute than responding in category k-1. While the 
scores must be consecutive integers, there is no requirement that the categories be equally spaced.  
To continue the archery metaphor, we now have a number of concentric circles rather than just a 
single bull’s-eye with more points given for hitting within smaller circles.  The case of m1 is the 
dichotomous model and m  is the Poisson, both of which can be derived as special cases of 
almost any of the models that follow.  

Rating scale

The rating scale model (Andrich, 1978; Wright & Masters, 1982) characterizes the person’s responses 
as a simple function of the person’s status (e.g., attitude, preference, condition, ability), and the 
item’s strength, with several levels up or down for the response categories.  The response category 
formats and parameters are assumed to be identical for every item.  Because of this requirement, 
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the model is used more frequently for attitude, preference, or evaluation questionnaires than 
achievement testing.  One common format is a series of statements that the respondent is asked to 
react to on, say, a four-point scale from “strongly disagree” to “strongly agree”.
If we are considering, for example, the statement: 

“The Rasch model is the very definition of measurement”

and the response format is:

	 Strongly Disagree	 Disagree	 Agree	 Strongly Agree

and we intend to respond in either category “agree” or category “strongly agree”, the probability of 
choosing “strongly agree” over “agree” is:

13.	 p (k      ,   i ,  k )                                               ,
p(k)

p(k 1)p(k ) k1e  i(        )

e  i k(        )

where response category k is “strongly agree” and p(k) is the unconditional probability of responding 
in category k, which we have not yet revealed.  Because, at this point, we are considering only two 
categories, expression (13) is identical to the dichotomous case with the item difficulty i  replaced 
by i  K.  The categories other than k and k-1 do not enter into the equation. 

The distinction between p and p is that p is the probability of responding “strongly agree” but p is 
the probability of “strongly agree”, given the response is either “agree” or “strongly agree”.  We have, in 
effect, already dismissed the less positive responses from our consideration.  

Apply a little algebra to expression (13) and we have a recursive expression for p(k):

14.	 p(k )e             p(k 1) i k(          )

or equivalently and sometimes more conveniently, the log odds of k versus k-1 (i.e., logit):

15.	 ln{                  }  {     (  i   k )} .
p(k)

p(k 1)

While we now have an expression for p(k), we need a starting point.  It is convenient, and no more 
arbitrary than any other value, to define the logit for category 0 as 0, and then the probabilities can 
be developed as in Table 3iv.  

17



Table 3:  Response Category Probabilities for a Rating Scale Model
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For the sake of completeness and the compulsively mathematical, the relationships of Table 3 can 
be captured in the standard expression of the rating scale model for the probability that person 
taking item i will respond in category k, given the person parameter     , the item parameter    i, and 
m category parameters   j :

16.	 p{k      ,   i ,(  j=l ,m )}                                                            .

1    e 
m

xl


x

jl
 i(                ) j


k

jle
 i(                ) j

1    e 
m

xl


x

jl
 ix (         )   j

e 
k

jl
 ik (         )   j

The summation in the exponent represents the summing of logits in Table 3; the summation in the 
denominator is the summing of the numerators, the numerator of k0 being one.

Figure 2 shows the category characteristic curves for a four-category item with nicely spaced 
categories.  The category parameters used to create the plot are (-3, -1, 1, 3).  These parameters 
appear in the figure as the intersections between adjacent categories.  The curves for category 0 
and category 1 cross at -3; the curves for category 1 and category 2 cross at -1; etc.  Items never look 
like this in real life.
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Figure 2:  Rating Scale with Four Equally Spaced Thresholds: Parameters  (-3, -1, 1, 3)

-3 -1 1 3

-4 -2 0 2 4

A person in category k is not described appropriately by the category parameter.   For this example, 
although 2 is -1.0, the most likely value for a person’s location, given an observed category of 2, is a 
logit of 0.0.  Because of the symmetry of this example, this estimate happens to be half-way between 
adjacent category values.

Table 4 illustrates some of the calculations behind Figure 2; specifically, the calculations needed 
for a point on each curve where        i 1.  Column 1 is the category score k.  Column 2 is the 
category parameter   K ; as with the dichotomous case, there is one fewer parameter than categories.  
The third column, exp(1  K ), is the exponentiation at the point on the logit continuum where 
the person parameter exceeds the item parameter by one logit.  The Numerator is the exponentiation 
times the previous numerator.  The Probability is the Numerator divided by the sum of the  
numerators.  This is a repeat of Table 3 with numbers instead of symbols.

k k exp(1- k) Numerator Probability 
0   1 0.00
1 -3 54.60 54.60 0.06
2 -1 7.39 403.43 0.44
3 1 1.00 403.43 0.44
4 3 0.14 54.60 0.06

  917.05 1.00

Table 4:  Step Probabilities for       1 and    (-3, -1, 1, 3)

Partial credit

The Partial Credit model (Masters, 1980; Wright & Masters, 1982) looks almost identical to the 
rating scale model.  When looking at a single item, the models are indistinguishable.  There is  
nothing about Figure 2 that says rating scale, not partial credit.  Tables 3 and 4 can be used here just 
as well if an i is added to the subscript of each    j .  If we continue to belabor the archery metaphor, 



in addition to circles of different sizes, different targets may use different numbers and patterns for 
the concentric circles.

For the mathematically inclined, the partial credit model for the probability of person  responding 
in category k on item i, given the person parameter  and the mi item parameters     ij   i  ij , 
may be written as:

ij
17.	 p{k       ,(  i , j=l ,mi )}                                                        

1    e 
mi

xl


x

jl
 ij(          )

1    e 
mi

xl


x

jl
x            

e

k

jl
k   ij

k

jle
 ij(          )

The distinction between the rating scale model (16) and the partial credit model (17) is that the 
category parameters,    j , have been subsumed under the item parameters    ij.  The practical 
implication of this change is that the response categories can differ across items; they can be different 
formats or have different numbers of categories.  For attitude or preference questionnaires, this may 
mean that different response categories are used for each statement (e.g., agree-disagree versus 
never-always; four-point scales versus five-point).  For achievement testing, it may mean zero points are 
given for completely wrong answers, mi points are given for completely right answers, and integer 
scores between zero and mi are given for partially correct answers according to the item rubric, with 
the maximum points mi and the scoring rubric for the partial credit specific to each item.

It is a matter of style or context whether the partial credit model is written in terms of    ij or    i  ij.  
The first form implies the item is best described by the mi threshold values;          ij looks like a 
generalization of the dichotomous case.  The second form implies the item can be described by a 
single location with the thresholds given as offsets around that;    (   i    ij ) looks like a  
generalization of the rating scale model. 

From the logic of partial credit scoring, the category parameters are typically perhaps inappropriately 
referred to as steps.  This is the point on the continuum where the person has completed one step 
in the problem solution, receives credit for that work, and begins work on the next step.  As with 
the rating scale formulation, this is the point on the scale at which the two adjacent categories are 
equally likely.  

Ordered categories, disordered thresholds

The categories, whether rating scale or partial credit, are always ordered: 0 always implies less than 
1; 1 implies less than 2; 2 implies less than 3…  The concentric circle for k is always inside (smaller 
thus more difficult) than the circle for k-1.  The transition points, might or might not be ordered.  
Perhaps the circle for k-1 is so close in diameter to k that it is almost impossible to be inside k-1 
without being inside k.

In Figure 2 above, everything was ordered nicely; Figure 3, below, illustrates another four-point item 
but with disordered values of (-3, 0, -1, 3).  Category 2 becomes more likely than 1 at a logit value 
of 0 but category 3 became more likely than category 2 at a logit value of -1. 
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Figure 3:  Rating Scale or Partial Credit with Four Categories and Disordered Thresholds:
Parameters  (-3, 0, -1, 3)
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There is no point on the continuum for which category 2 is the most likely response.  The person 
who is most likely to be in category 2 has a logit location of -0.5; however, a person at this 
location is more likely to be in either category 1 or 3.  A person who is strong enough to leave 
category 1 is unlikely to stop at 2 but is expected to go immediately to 3.  In spite of this confusion 
of parameters, the category curves are still in the natural order: being in 2 implies more than being 
in 1 and less than being in 3.

There is some controversy about how disordered thresholds should be interpretedv.  Masters,  
arguing from the mathematics, contends that nothing in the model is violated and it simply reflects 
an under-used category, which can be informative, if less than optimal.  Andrich, relying on his  
experience with rating scales, feels the disordering is a serious violation of Rasch’s principles and 
indicates a problem with the data that must be explored at the very least, the item should be revised 
or discardedvi.  For Masters, the concentric circles are very close to the same size; for Andrich, they 
might not be concentric or circles.

Many faceted Rasch models

The discussion thus far has considered the measurement problem with an object of measurement 
(e.g., candidate, student, patient, archer, rock) and an agent of measurement (e.g., test, 
questionnaire, checklist, bull’s-eye, rock).  Anyone, even a computer, can consult the scoring key 
and unambiguously assign a score to any response.  Many situations are not so mechanical and there 
is some judgment involved in assigning the score.  No matter how well-trained and conscientious, 
judges will sometimes differ.  Part of this variation may be random, but part may also be due to real 
differences in the temperament or harshness of the judges.  Either form of judge effect can be 
modeled and estimated just as well as the objects and agents (Linacre & Wright, 2004).

For the archery example, rather than employing near-sighted judges, we could introduce another 
type of facet, say, the distance between the archer and the target, which is not inherent to either the 
archer or the target, but that would affect the difficulty of the task and likelihood of success, in 21



addition to the archer’s skill and the target’s size.  Distance could affect the likelihood that anyone 
will hit a target and should be separable.  This would facilitate comparison among archers who shot 
at targets presented at different distances.

The probability for the dichotomous model with three facets looks very familiar but don’t let it fool 
you: 

18.	 p( pass       ,   i ,    j )                     ,  1e  i j

where    n is the skill of person ,   i  is the difficulty
of item i and      j is the harshness of judge j. 

e  i j

Expression (18) only looks like the rating scale model (cf. expression 11) on the right side; it is not 
the same.  The data from a rating scale comprise a two-way table: N people by L items.  The entry 
in the table is the person’s score, 0 to m, on the item.  The rating scale model is the probability of 
observing a score of k from person  on item i.  

The dichotomous facets model uses a three-way tablevii: N people by L items by J judges; the table 
entry is pass or fail.  Expression (19) is the probability of observing a score of pass for person  on 
item i as determined by judge j.

For simplicity in contrasting models, it is useful to express the model in terms of the logit, the log 
odds favoring a score of x over x-1; in the dichotomous case just presented, the log odds of a score 
of 1 over a score of 0 is:

19.	 ln( pij1   pij 0 )            i          j   

Most assessments involving judges use more elaborate scoring than just 1 or 0.  Typically, the judges 
are applying a rubric that results in polytomous scores.  If there is a common rubric that applies to 
all items, the facets model is an extension of the rating scale model, with the logit expressed as:

20.	 ln( pijk   pij (k1) )            i          j         k , which adds a parameter for each point 
	 in the rubric.

  

Additional complexity can be introduced by allowing different rubrics for different items.  
Expression (22) is a partial credit with judges:

21.	 ln( pijk   pij (k1) )              i           j          ik .   

This allows different rubrics for each item but still requires the judges to apply the rubrics in the 
same way.  Additional forms of the facet model could be envisioned that allow the judges to interpret 
the rubric personally,   jk , or personally for each item,   ijk .  Collecting data that adequately connect 
all components of the model can become an issue, which we will return to.

Linear logistic test model (LLTM)

There is another branch to the Rasch family tree that is better known in Europe than the US and 
may subsume everything that’s gone before (Fischer, 1973, 1995a; Fischer & Molenaar, 1995).  
The task of hitting any target with an arrow has an inherent difficulty that could be estimated readily 
with a suitable field trial and data analysis.  It may, however, be useful to think about the difficulty of 22
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each task, not as a vague amalgam of unspecified characteristics, but as a specific linear combination 
of more basic components that describe what makes a target difficult to hit. Important components 
might include, for example, size of the bull’s-eye, distance from the archer, and elevation of the 
target.  

This is thinking about targets differently than we were with the multi-faceted model.  Then the  
target was a piece of cardboard with circles drawn on it.  All other aspects of the task were looked at 
as separate issues that were treated as other facets, or standardized and randomized away, or ignored.  
Now, the target is the entire task including the circles, the distance, and the elevation; we might also 
include things not under our control entirely like wind and lighting.

If the basic components and their linear combinations can be specified, the difficulty of any target 
can be decomposed into the basic operations:

22.	   i                 wij j ,
p

jl

where j  is a parameter associated with operation j, and wij is a coefficient that indicates the role of 
operation j for item i.  The weights wij are established a priori and are not estimated.  

The decomposition can be imposed on any of the Rasch models discussed above, but for the 
dichotomous case, the probability of observing a response of 1 is:

23.	 p(xi 1      ,  i )                e  i

1e  i

1e  
p

kl
 ik k

e 
p

kl
 ik k

While, at first blush, this may not seem to make things easier, typically there are far fewer 
components than items so it can be a very parsimonious description of the instrument.

At the risk of stretching the archery analogy too far, we’ll propose three two-level components for 
the difficulty of a target: 122 cm. or 60 cm. diameter targets, 30 m. or 90 m. distance, and level or 
downhill range.  The eight distinct targets can then be described with four parameters as:

24.	 [  i ]              
3

j0ij j

1	 0	 0	 0
1	 1	 0	 0
1	 0	 1	 0
1	 1	 1	 0
1	 0	 0	 1
1	 1	 0	 1
1	 0	 1	 1
1	 1	 1	 1

 0  (base  122cm.,30m.,level)
 1  (size  60m)
 2  (distance  90m)
 3  downhill



The linear logistic test model (LLTM) was formalized by Gerhardt Fischer (1973, 1995a).  The idea 
originated from consideration of the cognitive operations required to solve math test problems.   
Scheiblechner (1972) decomposed the items into seven operations (negation, disjunction,  
conjunction, …).  The item’s difficulty was then expressed as a linear combination of these basic 
operations.  

This design matrix does not simply indicate the presence of a condition, as in expression (24), but 
indicates the number of times each operation is required in the problem’s solution.  For example,  
a possible decomposition of a specific set of items might be:

25.	 [  i ]               
3

j0
ij j

2	 1	 0	 0	 0	 0	 0
0	 1	 0	 1	 0	 0	 0
1	 0	 2	 1	 0	 0	 0
...

 1  (negation)
 2  (disjunction)
 3  (conjunction)
 4 
 5 
 6 
 7 

Typically, the number of possible operations, p, is much smaller than the number of items so 
LLTM can provide a very parsimonious description of the items.  It can be the basis of a fuller 
understanding of what makes an item difficult and suggests the possibility of generating new items 
at precise levels of difficulty.  A likelihood ratio test can readily determine if the decomposition into 
basic operations is an adequate description.

LLTM has also been applied to good advantage in the measurement of change.  While somewhat 
counter-intuitive, Fischer (1995b) formulated this problem as a change in the item difficulties rather 
than a change in person abilities.  If the same L items are used as the pre- and post-testviii, each 
person is considered to have taken 2 L items.  The reparameterization for LLTM uses L+1 
parameters: one for each item and one for the pre-post effect.

The appeal of this solution is that it is a Rasch model; specific objectivity obtains and sufficient 
statistics exist for the nuisance parameters.  The effect of the intervention between the pre- and 
post-tests is estimated consistently with no interference from the sample of students involved.  
When the estimation is done with conditional maximum likelihood (Mair & Hatzinger, 2007), 
likelihood ratio tests are naturally available for a variety of interesting hypotheses.

Summary II

Actually using these simple models is more demanding than doing the math.  It requires building 
instruments with items that are all equally valid, albeit imperfect, instances of the idea being measured.  
Hence, except for consideration of their relative difficulties, the items are completely interchangeable.  
This level of uniformity requires careful control of the item development process, the item culling 
process and the item administration process.  It does not mean that the items must or even should be 
homogeneous in their approach, content, or format.
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The point of all these deliberations is measurement; there is something about a person, or other 
object, that we wish to quantify, measure, and analyze.  This means developing and validating an 
instrument to provoke the person into providing us with relevant observations.  What we have 
discussed in Part II is an assortment of models that can transform observations of various types into 
measures.   Part III will finally discuss actually doing the arithmetic.

Part II Notes

iAll models are wrong.  Some are useful. G.E.P.Box  Models must be used but must never be believed. Martin Bradbury 
Wilk

iA little less frivolously, this may be expressed as a normalization   
L

il
i    i  c  , where   

L

il
i 1 .  Any transformation 

to a more user-friendly scale score metric is usually done at a later step.
iiiThe distribution does matter in one very practical way.  The people who answer both items right (lower right cell of Table 
2) or both wrong (upper left) provide no information about which item is harder.  Consequently, if the test is badly off 
target for the sample, a larger sample is needed to achieve the same precision.
ivThe  term in Table 3 is a normalizing constant to make the probabilities sum to one.  It is nothing more or less than the 
sum of the numerators.  If we were being more rigorous, a form of this constant would be introduced in expressions (12) 
and (13).
vThis summary of their positions is based on a number of conversation, both private and public, with Drs. Geoff Masters 
and David Andrich. See Andrich (2004) for a fuller discussion of his view.
viOr treated with a different model, perhaps unfolding (Andrich, 1995) or multidimensional (Briggs & Wilson, 2004); 
neither topic is discussed here.
viiMore facets are possible but we won’t take them on.
viiiIncomplete designs and designs with more than two time points are also possibilities but will not be considered here.  
See Fischer (1995b).
ixNuisance parameters mean the abilities in this discussion.

Part III: Rasch Methods and Arithmetic

Doing the Math

Specific objectivity is the common thread that runs through everything and the basic equation that  
the observations equal the expectations is a recurring theme.  The approach we are taking relies  
naturally on the so-called joint maximum likelihood estimation (UCON) of Wright and  
Panchapakesan (1969) and focuses on mean squares and person-item residuals.  Everything here 
could be approached using the fully-conditioned estimation methods and likelihood ratios tests just 
as well (Fischer & Molenaar, 1995; Andersen, 1973).  Our experience has been, if the data have 
something to say, the two approaches deliver the same message.

The minor payoff from applying a Rasch model, compared to what one needs to go through with 
IRT, is that the arithmetic involved borders on the trivial.  This section will show some basic  
calculations for estimating ability and difficulty parameters (calibration), evaluating the consequences 
of specific objectivity (control), and building a measurement scale (linking, equating, scaling).  There 
are alternative approaches, some more efficient or more powerful, but this is the basic idea and it’s a 
start.  



Defining the Variable

The major payoff is establishing the variable to be measured and developing instruments to measure 
it that conform to Rasch’s principle of specific objectivity.  The practical definition of the variable 
is the tasks we use to provoke the person into providing evidence.  Items that are hard to get right, 
tasks that are difficult to perform, or statements that are rarely agreed to will define the high end of 
the scale; easy items, simple tasks, or popular statements will define the low end.  The order must be 
consistent with what would be expected from the theory that guided the design of the instrument 
in the first place.  Topaz is always harder than quartz regardless of how either is measured.  If not, 
the items may be inappropriate or the theory wrongi.  The structure that the model provides should 
guide the content experts through the analysis, with a little help from their friends.

Table 5 shows the results of a hypothetical archery competition.  The eight targets are described in 
the center panel.  It is convenient to set the difficulty of the base target (i.e., largest bull’s-eye, 
shortest distance and level range) to zero.  The scale is a completely arbitrary choice; we could 
multiply by 9/5 and add 32, or whatever, if that were more convenient.  The most difficult target was 
the smallest bull’s-eye, longest distance, and downhill range.  Any other outcome would have raised 
serious questions about the validity of the competition or the data.

Table 5: A Definition of Bowmanship

Table 7: Hypothetical Archery Target Difficulties 

                  

Downhill, Far, Small + 

Level, Far, Small + 

Downhill, Near, Small + 

Level, Near, Small + 

Downhill, Far, Large + 

Level, Far, Large + 

Downhill, Near, Large + 

Level, Near, Large + 

+

+

+

+ Small (60cm)  

+

+ Far (90m) 

+ Downhill 

+ (Level, 122cm, 30m)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

William Tell 
Robin Hood 

Average Knight 

Sheriff of Nott… 

Average Page 

Target Logit Component Archer 

The relative difficulties of the basic components of target difficulty are just to the right of the 
numeric logit scale: shooting downhill added 0.5 logits to the base difficulty; moving the target from 
30 m. to 90 m. added 1.0 logits; and reducing the diameter of the bull’s-eye from 122 cm to 60 cm 
added 2.0 logits.

The role of specific objectivity in this discussion is subtle but crucial.  We have arranged the targets 
according to our estimated scale locations and are now debating among ourselves if the scale 
locations are consistent with what we believe we know about bowmanship.  We are talking about the 
scale locations of the targets, period, not about the scale locations of the targets for knights or pages, 
for long bows or crossbows, for William Tell or Robin Hood.  
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While it may be interesting to measure and compare the bowmanship of any and all of these 
variations and we may use different selections of targets for each, those potential applications do not 
change the manner in which we define the variable bowmanship.  The knights and the pages may 
differ dramatically in their ability to hit targets and in the probabilities that they hit any given target, 
but the targets must maintain the same relationships, within statistical limits, or we do not know as 
much about bowmanship as we thought.  

The symmetry of the model allows us to express the measures of the archers in the same metric as 
the targets.  Thus, after a competition that might have used different targets for different archers, we 
would still know who won, we would know how much better Robin Hood is than the Sheriff, and 
we would know what each is expected to do and not do.  We could place both on the bowmanship 
continuum and make defendable statements about what kinds of targets they could hit.

Calibration 
Estimating Logit Abilities:
 

This is almost beginning at the end and working backward but we will start with estimating the logit 
abilities (Wright & Stone, 1979).  

The process assumes the logit difficulties are known (i.e., good estimates of the logit difficulty 
parameters are available); no additional data are needed.  The ability estimate br associated with the 
raw score r is the value that satisfies the basic equation:

26.	  r             ,              E(xri )
L

il

where r is a raw score from 1 to M-1, M is the maximum number of points possible, L is the total 
number of items, E(xri) is the expected score on item i for a person with the ability associated with 
r, and the summation is over the items the person took.  Because total raw score is the sufficient 
statistic for estimating ability, everyone who took the same items and got the same raw score gets 
the same estimated ability br .  Hence the estimate can be indexed by the raw score, instead of the 
person. 
 
That’s all there is to computing logit abilities; the rest is detail.  In the dichotomous case,

27.	 E(xri )pri                 ,
1e brt          di

e brt          di

where di is the difficulty estimate for item i, assumed known at this point, and brt is the current and 
tentative estimate of ability associated with raw score r. 
 
Equation (26) simply says the expected total score pri is equal to the observed total score r; if they 
aren’t equal enough, the ability estimate needs adjusting.  If the expected score is low, the estimated 
ability is increased; if the expected score is too high, the estimate is decreased.  The ability estimate is 
adjusted by your favorite numeric method until equation (26) is satisfied.  Wright & Panchapakesan 
(1969) applied Newton’s method to give the iterations:



28.	 brt 
1  brt                           ,


L

il
r             pri             

(1pri ) 
L

il
pri              

An effective starting value for this process is:

29.	 br
0  ln                dr

Mr

where  
di  

L

il

L
d    is the center of the item difficulties, which is often zero.

Equation 29 makes it obvious, but it also follows more subtly and more profoundly from equation 
(26), that perfect scores, both r=0 and r=M, are problems.  There is no ability low enough to ever 
satisfy equation (26) when r is 0, nor high enough when r is M.  In the real world, it is generally 
necessary to manufacture something to report for examinees with these scores.  One tactic is to solve 
the equations for non-integer scores arbitrarily close to the perfect scores, say, within 0.25.  Whether 
the target should be off by 0.25, or 0.1, or 0.33, or some other value is completely arbitrary; the 
smaller the value, the more extreme the solutions will be.  It is more a policy decision than 
psychometric issue.

Another strategy, perhaps with slightly more psychometric motivation, produces almost the same 
results by assigning the logit ability to a raw score of zero that is the logit ability for a raw score of 
one minus the squared standard error of measurement:

30.	 b0b1s12.

Analogously for a perfect score of M, the logit ability estimate is the estimate for a score of M-1 plus 
the squared standard error.  The simple rationale for this tactic is that the difference between logit 
ability estimates for any adjacent scores looks approximately equal to the squared standard error of 
measurement.  The more sophisticated rationale is that this is equivalent to using expression (28) to 
estimate the ability for zero (or M-1) and stopping after the first iteration.

Table 6 shows the arithmetic for a small test with 10 dichotomous items.  It is typical for this process 
to stabilize in two or three iterations.  The standard error for the logit ability is the inverse of the 
square root of the sum of p(1-p).
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Table 6: Calculations of Logit Abilities for a Test with 10 Dichotomous Calibrated Items

Logit 
Difficulties

Raw 
Score

Initial
Logit

Round 
One

Round 
Two

Std
Error 

0.637 0     -3.49 1.74
-0.941 1 -2.197 -2.339 -2.347 1.071
-0.266 2 -1.386 -1.496 -1.499 0.814
0.382 3 -0.847 -0.922 -0.923 0.716
-0.455 4 -0.405 -0.444 -0.444 0.674
0.086 5 0 -0.001 -0.001 0.661
-0.881 6 0.405 0.441 0.442 0.674
0.000 7 0.847 0.92 0.921 0.717
0.297 8 1.386 1.496 1.499 0.815
1.141 9 2.197 2.341 2.349 1.073

10     3.5 1.74

Sum of p 

1 1.138 1.007 1   
2 2.175 2.005 2   
3 3.149 3.002 3   
4 4.085 4 4   
5 5.003 5 5   
6 5.92 6 6   
7 6.854 6.998 7   
8 7.826 7.995 8   
9 8.86 8.993 9   

Sum of p(1-p) 

1 0.972 0.876 0.871   
2 1.601 1.513 1.510   
3 1.997 1.949 1.948   
4 2.217 2.204 2.204   
5 2.287 2.287 2.287   
6 2.215 2.202 2.202   

  7 1.993 1.945 1.945   
  8 1.596 1.509 1.506   
  9 0.971 0.874 0.869   

Extending the calculations to a polytomous case requires extending the definition of the expected 
score used in equation (26):

31.	 E(xri )      ,kprik  
mi

kl



where the case of mi1 is the dichotomous case and, for example, 

	 prik  e

k

jl
r  ij(              )

1 
xl


x

jlmi e
r  ij(              )

is the estimated probability that a person with total score r will receive a score of k on partial credit 
item i. 
 

Estimating Logit Item Difficulties:
 

The truly elegant estimators for logit difficulties that completely condition out the sufficient 
statistics (Rasch, 1960; Fischer & Molenaar, 1995; Andersen, 1973) were computationally laborious 
and time consuming on the computers of the 1960’s.  Wright and Panchapakesan (1969) proposed 
a less elegant, slightly biased, and much faster method that became the standard of Rasch analyses in 
the U.S. (Wright and Stone, 1979).  It is the item difficulty analog to the person ability estimator of 
equation (26) above.

32.	  Si             ,E(xi )
Rmax

Rmin

where Si is the total number of points accumulated on item i by people who took the item and who 
have raw scores between a minimum score Rmin and maximum score Rmax .  If everyone takes all the 
same items, it is generally faster to sum over raw scores rather than the people.  Then, for the 
dichotomous case, if nr is the number of people with score r :

33.	  Si                nr E(xri )              .
Rmax

rRmin

nr pri  
Rmax

rRmin

This process uses two vectors of data: Si , the item scores, and nr , the number of people at each raw 
score, in addition to some estimate of logit abilities.

Rmin and Rmax could be one and one less than perfect respectively, but Rmin , in particular, is often 
set a little higher to avoid the noise commonly found with people with very low raw scores.  This 
again can be solved by almost any numeric method but Newton’s method works well:

34.	  di  t 
1  di  t                

Si             nr
 pri          

            nr
 pri (1pri )        

for the dichotomous case, with a starting value of:

35.	 di 
0  ln [             ]d ,NSi

Si

where N is the total number of people in the Rmin to Rmax range.
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Like zero and perfect scores, items that everyone gets right or everyone gets wrong can not be 
estimated but can be gotten around with strategies similar to the ones used for abilities.

The Wright-Panchapakesan method does not condition out the nuisance parameters but rather 
estimates them away.  While computing the difficulty estimates, the abilities are assumed to be 
known.  When the difficulties stabilize, attention is turned to the abilities.  Then the difficulties are 
assumed known and revised abilities are computed using equation 3.  The process continues 
alternating between estimating difficulties and estimating abilities until a reasonable convergence 
criterion is met.

The bias alluded to earlier is, on average, equal to M/(M-1), (Andersen, 1973).  This is analogous to 
the bias in the maximum likelihood estimate of the variance and arises for a similar reason: assuming 
parameters are known when they are only estimated.

Tables 7 and 8 show the results of a small simulation with ten items and one hundred students to 
illustrate the calculations.  Table 7 has the data: total item scores for the ten items and the counts 
of students at each raw score.  Table 8 has the step-by-step summary for the item difficulty 
estimation cycle.  The initial logits are the log odds for the reduced item scores centered on zero, 
e.g., ln[40/(9540)]d .  The reduced item scores have simply eliminated the five students with a 
perfect score.

Table 7: Vectors of Counts Needed To Estimate Difficulties

Raw 
Score

Count 
ng Item

Item
Score Si

Item Score 
Reduced 

0 0 1 45 40
1 1 2 79 74
2 6 3 66 61
3 8 4 51 46
4 12 5 70 65
5 16 6 58 53
6 20 7 78 73
7 10 8 60 55
8 9 9 53 48
9 13 10 34 29

10 5     

Table 8 shows two rounds of iterations needed to equate the observed items scores (reduced) to the 
expected item scores (sum of p).  The ability estimates used to obtain the sum of p and pq were 
taken from Table 6.  Additional cycles would mean recalculating the logit abilities using the revised 
difficulty estimates; the process continues until the difficulties are stable, which rarely takes more 
than two or three cycles with dichotomous items.  The final steps in this activity are: 

adjusting the logit difficulties for bias by multiplying by (M-1)/M and 

calculating a final round of logit abilities and standard errors using the final  
	 adjusted difficulties.

•

•



Table 8: One Cycle of Item Difficulty Estimation

Initial
Logits

Round 
One

Round 
Two Sum of P Sum of PQ 

0.637 0.783 0.784 42.71 40.02 40.00 18.62 18.32 18.32
-0.941 -1.151 -1.159 70.84 73.88 74.00 15.09 13.91 13.86
-0.266 -0.345 -0.346 59.58 60.99 61.00 18.02 17.77 17.76
0.382 0.462 0.462 47.51 46.00 46.00 18.88 18.83 18.83

-0.455 -0.575 -0.576 62.92 64.97 65.00 17.37 16.88 16.87
0.086 0.090 0.090 53.09 53.00 53.00 18.76 18.77 18.77

-0.881 -1.081 -1.088 69.92 72.89 73.00 15.41 14.31 14.27
0.000 -0.016 -0.017 54.69 55.00 55.00 18.64 18.61 18.61
0.297 0.356 0.356 49.10 48.00 48.00 18.89 18.89 18.89
1.141 1.410 1.420 33.64 29.15 29.00 17.22 16.10 16.06

Standard Errors of Estimation

A reasonable value for the standard error of estimation for either logit difficulties or logit abilities is 
the reciprocal of the square root of     p(1-p), i.e. for ability at a score of r :

36.	   sr                                
{E(x2

  )[E(xri )]2
 }

L

il
ri√
1

pri (1pri  )
L

il√
1

The relevant standard error of estimation for an item difficulty is computed with the analogous 
expression:

37.	   sr                                   
nr{E(x 2 )[E(xri )]2

 }
Rmax

rRmin
ri√
1

nr pri(1pri  )
Rmax

rRmin√
1

Wright and Douglas (Wright & Stone, 1979) devised a rule-of-thumb estimate for the standard 
error, useful for designing tests and determining sample sizes.  The maximum value of 0.25 for 
pri (1-pri) occurs when pri   0.5.  If every pri   took this value, then si   2/√N, which represents 
the best case with the item targeted perfectly for every person.  A more conservative value might be 
si  3/√N, which assumes pri  about 0.9.  Wright opted for a middling value of si ≈ 2.5/√N.
  
A similar formulation applies to the ability estimates as well: sr ≈ 2.5/√M, which can be extended 
to give an approximate reliability with one more sweeping assumption.  In many situations, the 
observed within grade standard deviation of ability estimates is approximately one logit.  Then a 
reasonable approximation of reliability is:

38.	                                                     ,~b2  r2

b2
16 / M

1
M6

M

where M is the maximum total points possible and 6 is close enough to the square of 2.5.  This can 
be turned around to give the test length needed for a given reliability  :
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39.	 M6 / (1    ).

All of this assumes reasonable items of equal quality.

Linking and Equating

Invoking the full power of Rasch models means defining a useful construct and developing a pool 
of calibrated items that measures it.  Equation (26) for estimating logit abilities can be solved for 
any selection of calibrated items.  An ability estimate from any subset of the calibrated items can be 
compared directly to estimates based on any other subsets taken from the same pool.  In that sense, 
all possible forms and scores from the pool are equated.  All this assumes that the pool conforms to 
Rasch’s requirements; that is, composed entirely of equally valid and reliable items.

The terms, link and equate, are often used interchangeably.  If there is a distinction within the 
context of Rasch measurement, 

Linked means two forms are connected through some common element, either 
	 overlapping items or a shared group of examinees.  

Equated means the (logit) scores from one form can legitimately be compared to  
	 (logit) scores from the other form.

Linked implies a connection exists between the forms; hence, they are capable of being equated.  
Equated implies the forms were linked and all the necessary work has been doneii. 

In principle, two forms can be linked with a single item (or a single person).  Because it is the same 
item, any difference in the item’s logit difficulty estimate, beyond random error, is due to a difference 
in the arbitrary origins of the forms.  With an easy form, centered on zero, the link item could have a 
positive logit, implying it is harder than the average.  With a difficult form, also centered on zero, the 
link item may have a negative logit, implying it is easier than the average.  The goal of an equating 
analysis is to eliminate that arbitrary difference by adjusting the logit estimates on one form so that 
the link item has the same numeric value in both contexts.

Assuming our link item has a difficulty estimate of diA when calibrated with form A and an estimate 
of diB when calibrated with form B, then the form B estimate can be made to equal the form A 
estimate by subtracting diB and adding diA.

If we do it to one item on form B, we need to do it to every item to maintain their relative 
positions.  The two forms are equated by adding tdiAdiB to every logit on form B.  
The adjusted form B difficulty for the linking item is:

40.	 d iB(diBt)diBdiAdiBdiA.

In practice, it may not be a good idea to equate through a single item.  With several link items, the 
translation constant t is simply the difference between the means of the link items from the two 
calibrations.  

•

•



41.	  t  dALink  dBLink
                                      ,

di A      
iLink
nLink

di B      
iLink
nLink

(di Adi B)
iLink

nLink

where nLink is the number of link items.

The equating constant t is added to every item on form B as before.  After adjustment, the mean of 
the link set will be identical in both contexts.  The only hard part is remembering when to add and 
when to subtract.

The number of items that should be in the link, like any sample size, depends on how precisely you 
need to know the answer.  Using the Wright-Douglas approximation, the squared standard error for 
t is:

42.	   set2
                          ,nLink

1
NA

6{ }NB

6

where NA is the number of students used in the form A calibration and NB is the number used 
in the form B calibration.  Turning the relationship around, and assuming equal sized calibration 
samples, provides the link length needed for a given standard error.

43.	  nLink
           .set2N

12

Inconveniently, limitations on the test length and on item exposure often have more to do with the 
size of the link then does the magnitude of an acceptable standard error needed to make the 
psychometricians happy.  And most get very uncomfortable when nLink is as low as 10 items, the 
impeccable logic of equation (43) notwithstanding.

Multiple link items, in addition to increasing the precision of the estimate of the equating constant, 
can be used for control of the process.  Each item pair provides an estimate of the equating constant.  
Like statistics everywhere, they will not be identical.  The problem is to recognize and eliminate 
outliers from the calculations of the meansiii.  There are a number of more or less heuristic techniques 
for dealing with the uncertainty.

Figure 4 shows the simplest possible link analysis.  The data plotted are the logit difficulties from the 
bank and the logits obtained from a calibration of the current administration.  The data should 
follow a slope one line with the intercepts representing the required translation constant.  This 
example is a very clean link, with one outlier, and an x-intercept of 0.5, ignoring the outlier.  Adding 
0.5 to every current logit will shift the plot vertically so that the slope one line passes through the 
origin and the current administration has been equated to the bankiv.
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Figure 4: Sample Link Analysis

Simple Graphic Link Analysis
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The same analysis and the same result can be achieved with the appearance of more rigor if we use 
tables and numbers.  The simplest non-graphical method is to choose a criterion logit value and 
reject any item from the link if its estimate tidiAd iB is larger than the criterion in absolute 
value.  The most commonly mentioned criterion is 0.3 logits.  This is easy to apply but is criticized 
because it ignores the standard errors of estimation; it applies the same criterion regardless of how 
well we know the item’s difficulty.

A little more stringent strategy performs a Student’s t-test on each item using the standard errors 
from expression (37).  Items are rejected if the t-statistic is larger than the psychometrician’s tolerance 
level.  This is criticized because it doesn’t ignore the standard errors; it is more tolerant of 
discrepancies when they come from poorly estimated items.  

Our final strategy, which incorporates the weaknesses of both, uses a simple robust estimate of the 
standard error of the differences and applies it uniformly across the items.  A robust-z is computed as:

44.	  zi
                         ,

ti Q 2
0.74(Q3Q1)

where Q1, Q2, and Q3 are the first, second, and third quartiles of the distribution of the ti .  An 
item is rejected if its ti  is greater than 1.645 in absolute value.  This approach is criticized because 
it will almost always find outliers; if the items are very consistent, that’s a good thing but Q3  Q1 
will be very small.  To provide a rational stopping rule, no items are dropped after the ratio of  
standard deviations of the two sets of difficulties is between 0.9 and 1.1 and the correlation  
between the two sets of difficulties is at least 0.95.

Dropping an item from the link does not imply that the item must be dropped from the test.  It does 
imply some violation of specific objectivity because that item is not consistent across forms; the item 
still may have functioned acceptably in both situations, although differently.  The first thing to check 



is that the difficulties have been matched correctly.  If so, it may be the item was unusually amenable 
to instruction or it may mean it interacted with popular culture (e.g., movies, commercials, music 
lyrics, current events) in some way others did not.  Or it may mean there was a security breach.  It 
is good for the psychometrician’s peace of mind and often informative to identify the source of any 
disturbance. 

Table 9 contains a summary of these analyses for the same data used in Figure 4.  The Pool and 
Current logits are given.  The Difference is the Pool – Current; the Adjusted is the Current + average 
Difference; and the Discrepancy is the difference between the Pool and Adjusted logits.  The Student’s 
t-statistic is Discrepancy divided by the standard error from the data of table 8v.  The Robust Z is 
defined by equation (44).

Table 9: Sample Link Calculations

First Round: 
All Items 

Pool
diA

Current 
diB

Difference 
diA-diB

Adjusted 
diB+t

Discrepancy 
diA-(diB+t)

Student’s 
t-statistic

Robust 
Z

1 1.089 0.705 0.383 1.266 -0.177 -0.76 -1.23
2 0.149 -1.043 1.193 -0.483 0.632 2.35 6.57
3 0.148 -0.311 0.459 0.250 -0.102 -0.43 -0.50
4 0.844 0.415 0.429 0.976 -0.132 -0.57 -0.79
5 0.074 -0.519 0.592 0.042 0.032 0.13 0.78
6 0.402 0.081 0.320 0.642 -0.240 -1.04 -1.84
7 -0.472 -0.979 0.508 -0.419 -0.053 -0.20 -0.03
8 0.515 -0.015 0.529 0.546 -0.031 -0.13 0.18
9 0.998 0.320 0.678 0.881 0.118 0.51 1.61

10 1.792 1.278 0.514 1.838 -0.046 -0.19 0.03
Mean 0.554 -0.007 t = 0.561  Q2 = -0.05 -0.03  

Std Dev 0.644 0.732 0.244 Q3 = 0.02 0.90  
Ratio SDs 0.88  Q1 = -0.12   
Correlation 0.94       

Second Round: Drop Item 2 
1 1.089 0.705 0.383 1.196 -0.107 -0.46 -1.67
2 0.149 -1.043 -0.553
3 0.148 -0.311 0.459 0.179 -0.031 -0.13 -0.65
4 0.844 0.415 0.429 0.906 -0.062 -0.27 -1.06
5 0.074 -0.519 0.592 -0.028 0.102 0.42 1.14
6 0.402 0.081 0.320 0.572 -0.170 -0.74 -2.52
7 -0.472 -0.979 0.508 -0.489 0.017 0.07 0.00
8 0.515 -0.015 0.529 0.476 0.039 0.17 0.29
9 0.998 0.320 0.678 0.810 0.188 0.82 2.29

10 1.792 1.278 0.514 1.768 0.024 0.10 0.71
Mean 0.599 0.108 t = 0.490  Q2 =  0.02 0.00  

Std Dev 0.667 0.674 0.108 Q3 =  0.04 0.44  
Ratio SDs 0.99  Q1 = -0.06   
Correlation 0.99       
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Using all items, the ratio of standard deviations is 0.88 and the correlation is 0.94.  These imply 
something should be dropped.  Only item two is eligible with a robust z larger than 1.645 (and a 
discrepancy larger than 0.3 logits and a Student’s t twice as big as anything else.)  Dropping this item 
changes both the SD ratio and the correlation, coincidently, to 0.99, which implies we are finished.  
The end result, no matter how we did it, was we dropped one item and added 0.49 to the current 
logits to place them on the pool logit scale.  (The Student’s t was the weakest test in this situation but 
the calibration was based on only 100 examinees.)

Because all the criteria for a satisfactory link (no discrepancy larger than 0.3, correlation greater  
than 0.95, ratio of standard deviations between 0.9 and 1.1) are met, there is no reason to have 
computed the robust z statistics for the second round.  However, having done it, there are two that 
are larger than 1.645.  This is the nature of this calculation; there will always be a most extreme 
value.  If all the other criteria are met, we end the process, report the scores, and go to dinner.

Multiple Link Forms

If we can equate two forms, or one form to a bank, we can also equate multiple forms with multiple 
interconnections.  We can use this same analysis to proceed one link at a time until eventually the 
entire network is equated.  Any redundancies can be used to monitor and control the process.  For 
example, linking form A to form C should give the same result as linking form A to form B to form 
C.  Or, alternatively, A to B to C to A should bring us back to where we started and result in a zero 
shift, within statistical limits. 
 
There is a straightforward least squares path to resolving any inconsistencies due to random noise.   
If we have k forms and there is a link tij between each pair (i, j ), then summing all the values for 
form i,

45.	  Ti
                              tij  

jl

k
(ti  tj )kti 

jl

k
tj  

jl

k

where Ti is the sum of all form i links, tij is the link for form i to form j, and ti is the general 
equating constant for form i that we are after.  Then, if all form-to-form links are present and if we 

let  tj  
jl

k
 , the equating constant for form i is simply:

46.	  ti        .Ti
k

If not all the links are present, the solution is a little more complicated involving at the worst a 
system of k simultaneous equations.  In matrix form,

47.	 At = T, 

where T is a kx1 vector of the row sums Ti from equation (45), and t is the vector of equating  
constants we are after.  If all the links are present, A is a diagonal matrix with the value k along on 
the diagonal and expression (46) is the solution to expression (47).



  In general, however, A is symmetric with: 

48.	 aij  0 if the link (i,j ) is present and 1 if not, for i ≠ j, and

49.	 aii  k – mi , where k is the number of forms and mi  is the number of missing links for 	
	 form i.

This tactic of completing the sum can be used in a variety of situations involving paired comparisons.

To illustrate, assume we have five forms with the form-to-form equating constants shown in table 
10.  The values in the table are added to the row form to equate it to the column form.  Equating A to 
B means adding -0.49 to form A logits; alternatively, equating B to A means adding 0.49 to form 
B logits.  The first section of the table is completely filled so the equating constant for each form is 
the row mean.

Table 10: Resolution of Multiple Links

Completely Filled Table of Links 
  A B C D E Sum 

Equating 
Constant 

A 0.0 -0.49 -1.10 -1.47 -1.94 -5.00 -1.00
B 0.49 0.0 -0.41 -0.88 -1.71 -2.50 -0.51
C 1.10 0.41 0.0 -0.42 -0.90 0.19 0.04
D 1.47 0.88 0.42 0.0 -0.64 2.13 0.43
E 1.94 1.71 0.90 0.64 0.0 5.18 1.04

Missing Links 
A 0.0 -0.49      -0.49 -0.93
B 0.49 0.0 -0.41    0.08 -0.44
C  0.41 0.0 -0.42 -0.01 -0.03
D    0.42 0.0 -0.64 -0.22 0.39
E      0.64 0.0 0.64 1.03

The second half of the table is missing six links: A-C, A-D, A-E, B-D, B-E and C-E.  Finding the 
equating constants requires solving the matrix equation derived by expressions (48) and (49):

50.	

2	 0	 1	 1	 1
0	 3	 0	 1	 1
1	 0	 3	 0	 1
1	 1	 0	 3	 0
1	 1	 1	 0	 2



tA
tB
tC
tD
tE



–.49
0.08
–.01
–.22
0.64

The two solutions give slightly different answers, but they are using rather different data.  In either 
case, adding the linking constant to every logit for a form will shift it to the common origin, 
centered on the mean of all forms.  The only hard part is knowing when to add and when to 
subtract.
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Connectedness

Rasch’s original problem with oral reading arose because the data could not answer the basic 
question, were differences in the reading scores because the student had changed or because the text 
was different?  The data were not properly connected, or in the language of experimental design, the 
occasion effect was confounded with the text effect, or in the language of mathematics, the model was 
not adequately identified. 
 
The specific objectivity of his new model allowed Rasch to construct the connections using entirely 
different samples.  The design, shown in Table 11 (Rasch, 1960, p. 5), provided the data needed to 
estimate the differences between successive occasions and successive texts.  This sort of design is now 
common practice with either overlapping subtests or overlapping samples or both.

Table 11: Design of Remedial Reading Linking Study

 Text 
Grade ORF ORU ORS OR5 OR6 

2 X     
3 X X    
4   X X  
5  X X X  
6   X X X 
7    X X 

With the facets model, the overlaps can be more difficult to identify and manage.  The cleanest 
solution is to have every response scored by every judge but that is rarely feasible and never necessary.  
Table 12, adapted from Linacre & Wright (2004, p. 303), illustrates the problem and implies the 
solution.  This example involves two blocks of four students, two judges, and two tasks.

Table 12: Linacre-Wright Deficient Judging Plan

  Tasks X Y 
  Judges A B A B 

101 * *     
102 *      
103 * *     
104 *       
201      *
202    * *
203      *

Students 

204     * *

It is clearly possible to contrast Judge A with Judge B because there are several pairs of cells that 
involve the same student and the same task, but different judges.  However, there is no comparison 
between Task X and Task Y that does not include the difference between student group 100 and  
student group 200.  The problem would be eliminated by administering Task X to some of the 
group 200 students or Task Y to some of the group 100 students.  In principle, one additional 
observation could be enough but more overlap would give smaller standard errors and better balance 
would allow for more rational control of the model.



Scaling

After all the calibrating, linking and equating, nothing is left for scaling to mean but the linear 
transformation that converts logits into something more palatable (Smith, E., 2004):

51.	 Scale Score = a  b logit.

Mathematically, logits are very convenient.  However, they look a lot like standard normal deviates, 
involve positive and negative numbers, and require decimals.  These are not particularly appealing 
for reporting.  The scaling constants a and b are chosen to communicate as effectively as possible; 
there are no right or wrong choices but there are some useful guidelines:

Never report a negative scale score to anyone’s parents.  They will react negatively.

Never send numbers with decimals to superintendents or school boards.  They will  
	 try to interpret the decimal part.

Never make a scale that looks like someone else’s scale, especially SAT, IQ, or percent 
	 correct.  Someone will assume they are what they appear to be.

Beyond this, it’s your choice.

Control of the Modelvi

 
The first principle of Rasch analysis is specific objectivity: any appropriate sample of people will 
lead to statistically equivalent estimates of the item difficulties.  If the results are not statistically 
equivalent, we have a problem or at least a concern or a limitation.  Typically, this is put under the 
heading Goodness of fit; but that label was something of a foreign concept to Rasch; his phrase 
control of the model, however, was central.  The amount of noise remaining in the data after 
removing the effect of the sufficient statistics was not of much concern, so long as it was noise.  
The intent is to achieve specific objectivity, not account for variancevii.  

From specific objectivity, it cannot matter whether we estimate the item parameters using the 
total group who took the test or any subgroup of the total.  We will get statistically equivalent 
estimates from high scorers or low scorers, from Caucasians or African-Americans, from males 
or females, from this year’s students or last year’s, from fourth graders or fifth graders, from 
computer-administered or paper-and-pencil.  

When we estimated the item difficulties, we solved the basic equation, the expected equals the 
observed, for di :

52.	  Si                nr                           .
Rmax

rRmin 1e br       di

e br       di

Then for any and all subgroups G, the equation:

53.	  SiG                
G 1e b

       di

e b
       di

•

•

•
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must also be solvedviii within some level of statistical tolerance.  The change in subscripts is intended 
to indicate the counts and sums include only the members of sub-group G.   If equation (52) is not 
satisfied, specific objectivity does not extend to group G or some members of it.

This can be adapted to look like a mean square statistic (and replacing  
1e b

       di

e b
       di

  with pi ):

54.	  MSiG                      ,              


G
pi (1pi )

SiG   pi
G(                       )

2

This is very similar in appearance to the Wright-Panchapakesan iteration for estimating difficulties, 
expression (34), which suggests that the mean square is closely related to the amount the difficulty 
estimate needs to be changed to satisfy expression (52) for this group.

Between Score Group Mean Square

How one defines the groups G is important.  If one suspects that the measurement may be 
threatened by left-handedness, attending a rural school, limited English proficiency, age, gender, 
or some other characteristics of the examinees, then those groups should be checked.  Wright and 
Panchapakesan (1969) suggested a between-score-group mean square, which was easily implemented 
with limited computing capacity and is relevant to every instrument.  Groups of examinees were 
defined on the basis of total score, providing a simple and direct check that the calibration was in 
fact independent of the ability distribution of the examinees.

55.	  MSiB                                .              


G
pi (1pi )

SiG   pi
G(                        )

2


Gng

1

In this expression, G now represents a range of adjacent raw scores and there is a total of ng such 
groupings.  Score groups were constructed to be as homogeneous in estimated ability (i.e., as few raw 
scores) as possible and to contain approximately equal numbers of examinees.  In 1969, the number 
of groupings was severely limited by the capacity of the available computers.  In today’s world of 
computing, the score groups can be as narrow as the sample size allows.

The between group mean square was useful but did not do everything.  It is sensitive to calibration 
differences related to ability (i.e., the shape of the item characteristic curve), which is fundamental to 
specific objectivity.  It is not necessarily sensitive to the multitude of other characteristics that might 
distinguish examinees.  It also was annoyingly affected by how many score groups were used and 
how they were defined.  

Total Unweighted Mean Square (Outfit)

To avoid the arbitrary aspects of the between group mean square, a total mean square statistic was 
suggested (Mead, 1976) that took the group size to the absolute and completely objective minimum 
of one:

56.	  MSiT                                     , where xi  (0,1) is the score of person  on item i.
1, NN

1
pi (1pi )
(xipi )

2



The total mean square can be viewed as the extension of the between group mean square down to 
groups of size 1.  However, it is no longer a simple test of the shape of the item characteristic curve.  
It will be affected any time a high scoring person misses an easy item or a low scorer passes a difficult 
item.  

Basing this type of statistic on a dichotomous variable is problematic.  The basic residual for person 
 on item i is:

57.	 yi  xi  pi .

If we standardize by dividing by the standard expression for the standard error and label it zi, the 
expression looks like a standard normal deviate:

58.	  zi                    ,
pi (1pi  )√
xi pi  

Starting with a one or zero, the result is hardly a standard normal.  Because only two things can 
happen, correct (xi 1 ) or incorrect (xi 0 ), the squared standardized residual will take one of 
two forms:

59.	  zi                     , if the response is correct, and zi                       if incorrect.
1pi  

pi 

2
e b 

e di   2
1pi   

pi  

e di

e b 
 

In either case, z 2 is the odds against the observed response, which is remarkably handy and 
interpretable.

Total Weighted Mean Square (Infit)

The odds statistic can get very large in the best of circumstances.  For example, with a rather small 
large-scale assessment, say 50 items and 20,000 examinees, one should not be surprised to see an 
event that has odds of one in a million.ix  With the hope of dampening the level of alarm, Wright 
proposed a weighted mean square:

60.	  MSiW
                                              , where wi  pi(1pi).

(xi pi )2  
l,N

pi (1pi )  
l,N

yi       
l,N

2

wi       
l,N

wi zi       
l,N

2

wi       
l,N

Wright has labeled the value from expression (59) infit and, to contrast with that, he has labeled  
expression (56),   MSiT

                
1, NN

1 zi
2

, outfit.  The outfit and infit statistics are highly correlated 

with each other, with the between group mean square, and with the traditional point biserial  
correlation for the item.  They are, however, not identical and many threats to specific objectivity  
are not readily detected by any of them.
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Do-It-Yourself Mean Squares

Before we move on, the between score group mean square can also be written as an aggregation of the 
residuals:

61.	  MSiB
                                                                                        .             

Gng

1

G

pi (1pi )

SiG pi
G(                      )

2
xi pi

G(                          )
2

G


G

wi

 yi(            )
2

G
Gng

1

G

pi (1pi )

Gng

1

As before, each of the ng instances of G represents a range of adjacent raw scores.  The statistic will 

become large whenever the basic estimation equation  Si                nr                  
Rmax

rRmin 1e br       di

e br       di

  is not satisfied within 
each restricted range of scores.

The more one knows about the construct to be measured, the theory behind it, and the examinees, 
the better able one is to design the appropriate analysis to control the measurement model in your 
neighborhood.  We can reorganize the person-item residuals ad infinitum.  If we are creative in the 
definition of the groups G, beyond just adjacent raw scores, expression (61) can be applied to almost 
anything. 
 
Two obvious choices are gender and ethnic group.  We can immediately extend this to define the 
groups as gender by ethnic or as gender by ethnic by raw score.  This is letting the Rasch model do the 
grunt work of adjusting for differences in the ability distributions between groups in a DIF analysis.  
The appropriate group definition depends on what we suspect about, for example:

Is there a gender difference? (Uniform gender DIF)

Is it the same for all ethnic groups? (Gender by ethnic interaction)

Is it the same for all ethnic groups at all levels of ability? (Non-uniform interaction)

There are just the obvious, rather generic choices.  

Person Analysis Statistics

Given the symmetry of the Rasch model, we have been rather parochial in our discussion of model 
control.  The entire preceding discourse could be framed in terms of a person just as well as an item 
by simply fiddling with the subscripts.  The total unweighted mean square (outfit) for person  is:

62.	  MST               ,              zi 
il, LL

1 2

And the between item cluster mean square is:

63.	  MSC
                     .             

Cnc
1


iC

w

 yi
iC(             )

2

•

•

•



Item clusters have replaced person groups.  Clusters can be defined anyway we find diagnostic, 
informative, or threatening.  They could be defined, to list a few of the mundane, by content, 
passage, format, sequence, mode, type, exposure, Lexile, and, of course, difficulty.  

Partitioning the Person-by-Item Residuals

The basic data behind all of this is a person by item matrix of residuals.  It is the Rasch extension of 
Sato’s S-P chart (Wu, 1998).  We can operate on the columns to investigate items or on the rows to 
investigate people.  We can also take it to a whole other level.  The matrix can be partitioned into 
blocks that involve both rows and columns.  We might ask, for example, if there are differences 
between boys and girls on items involving sports, cooking, horses, or auto mechanics.x 

64.	  MSGC
                         .             

CGngc

1  yi
iC(                  )

2


G

wi
iC


G

Defining methods of aggregation is easy; interpreting the results, not so much.  Understanding 
requires experts with real subject matter expertise, e.g., teachers, counselors, physicians, parents, 
who know more substantive things than do psychometricians.

Concluding Remark

The measurement model devised by Georg Rasch is an elegant statement of the conditions necessary 
for Thurstone’s fundamental measurement.  When the conditions are met, the results are measures, 
in exactly the same sense that the physical sciences have measures.  Operationally for educational 
and psychological testing, the conditions boil down to items that are equally valid and reliable no 
matter whom we apply them to.  This does not imply that the either the items or the people are 
homogeneous, (in fact, adequate control suggests that they should not be) but the interaction 
between the person and the item must ultimately be controlled by the one aspect of interest.
 
In the narrow sense, the measurement model is the technique for converting an observation into 
a measure.  The arithmetic needed to accomplish this with Rasch is simple.  In the broader sense, 
the measurement model is the process that begins with a vague concept of some aspect of a class 
of objects and ends with the valid, useful, general quantification of that aspect.  Following Rasch’s 
reasoning, this may also be simple but it’s definitely not easy.

While there are efficient, more powerful alternatives for many of the methods discussed here, our 
basic point is that any interested party can follow the motivation and the principles involved when 
the maths don’t get in the way.  There is ample room and real value to investigating these and other 
methods, but for me, the urgency is to devote energy and resources to developing better methods to 
obtain good data rather than better methods of manipulating poor data.  If we are not sure what we 
are measuring, does it matter how precisely we do it?

Returning to our very first point, validity trumps reliability.
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Part III Notes

iA startling new discovery, like quartz scratching topaz, usually means that the data are miscoded.
iiIn other contexts, the distinction is made that equated implies that the tests measure the same construct while linked 
implies the tests have been connected but they may not measure the same thing.  Measures from equated tests are  
interchangeable; measures from linked tests may be useful as validations, as predictors or as mileposts but they are not  
interchangeable.  In the context of Rasch measurement, we only consider tests that measure the same construct and so  
can be equated if they are linked.  You can do what you want in the analysis phase.
iiiIt should also be noted that nLink is the number of items we want in the link after the outliers are dropped.
ivThis process is symmetrical.  The y-intercept, -0.5, could be added to the bank logits to shift the plot horizontally and 
place them on the current scale if that made sense to anyone.
vFor example, the standard error for item 1 is 1/√18.32  0.234, which is in the ballpark of 2.5/√100.  We are also 
acting as though the bank values are known without error.
viTo keep this exposition to a manageable length, we are restricting ourselves to statistics for the dichotomous model.   
See Ludlow (1983).
viiHowever, if the remaining noise doesn’t look something like p(1-p), we would be a little concerned and Rasch would 
probably have thought specific objectivity had not be achieved.
viiiOur rather cavalier assertion that because the estimation equations are solved within the total group, then, by dint of 
specific objectivity, they are solved within any relevant subgroup needs to be qualified somewhat.  The equations were 
solved within the calibration sample using the biased estimates.  Now that we have de-biased the estimates, the equations 
are not solved quite so well.

There seem to be four reactions to this news:
The mean squares should be computed using re-biased estimates if we are to have any hope of  

	 understanding the null distributions.
The unbiased estimates are the closest thing to truth we have and should be used for everything including 	

	 fit analyses once we have them.
The differences are too small to worry about given the problems building instruments that actually satisfy	

	 specific objectivity. 
We should be using fully conditional estimation methods and likelihood ratio tests anyway.

ixHowever, it still is curious that that student responded that way to that item.  What was he thinking?
xThese are included as illustrations of how the matrix might be partitioned; it is not a recommendation of how a test should 
be built.  But if such divisions do exist in the data, you probably should check them.

•

•

•

•
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Questions for Discussion

1.	 When should you consider using the Rasch model?

2.	 If “validity trumps reliability,” do we need to worry about reliability at all?

3.	 Write the expressions for the three probabilities mentioned, but not derived, between  
	 equations (1) and (2), recalling that the joint probability of independent events is the product 
	 of the individual probabilities and that the sum of two Poissons is also a Poisson with the 
	 parameters summed and the counts summed.

4.	 What does it really mean to say the items are equally valid?

5.	 Aren’t we being inconsistent when we let the data establish the scaling of the items but not  
	 the weighting?

6.	 Assuming the Sheriff of Nottingham has a logit value of 0.75 for bowmanship, what is the 
	 probability that he will hit a large, level, near target?

7.	 There is an abrupt change from probabilities to counts between equations (7) and (8).  Show 
	 that summing over an arbitrary sample to obtain the counts does not interfere with the claim 
	 of specific objectivity.

8.	 How did we get from the probability in expression (18) to the log odds in expression (19)?

9.	 Table 4 contains the category probabilities for a rating scale or partial credit item with the step  
	 values of (-3, -1, 1, 3) used in Figure 2.  Prepare a similar table for Figure 3 using the step 
	 values (-3, 0, -1, 3) at the logit 0.

k k exp(0- k) Numerator Probability 
0  1 
1 -3   
2  0   
3 -1   
4  3   

 Sum   98.49 1.00

10.	 What would happen to the probabilities in the table above if we made a different arbitrary 
	 choice for the numerator of category 0, say, five instead of one?

11.	 If the Rasch models are truly sample-free, why all the anxiety about connectedness?

12.	 Given the importance of unidimensionality, why might it be a good practice to use items that 
	 are not homogeneous in their approach, content, or format?

13.	 Since Rasch models are symmetric for items and people, why do we use data to estimate  
	 difficulties when we didn’t need any to estimate abilities?

14.	 What did the phrase “completing the sum” mean and what sum did we complete to solve the 
	 equation (47) AtT for the multiple links?

15.	 Why is no single fit statistic necessary?  Sufficient?

16.	 If we always assume di0, when would we ever need to recenter the item difficulties in  
	 equation (26)?
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Discussion

1.	 The conventional IRT answer is that one should use the Rasch model when there aren’t 
	 enough resources (i.e., sample size, time, expertise) to do better.  A more generous view is that 
	 one uses the one-parameter model if the two- and three-parameter models have been tested  
	 against it and have not been found to explain significantly more variance.  

	 The Rasch answer is that one uses a Rasch model whenever one wants to do measurement.  
	 This implies that one has sufficient interest, expertise, and resources to define the variable and 
	 develop the instruments appropriately.  These activities are not finished until the data conform 
	 to the model’s requirements.  The question of model choice is a philosophical not empirical 
	 decision.

2.	 Of course we do!

3. 	 Joint probability of the counts ai and aj is the product of the individual Poisson functions: 

p(ai, aj)  e     e                           .   i
ai !ai !

   j
      i               j   
ai      ai         aj      aj   

	 Probability of the sum of counts is a Poisson with ij and xai+aj : 

p(aiaj)  e (           )                                 .   i     j
(ai aj )!

(   i    j )
ai  aj ai  aj 

	 Conditional probability of the counts given the sum is the ratio of the two:  

p(ai, aj  aiaj)                                                           .
p(ai, aj )
p(aiaj ) (                   )aiaj

ai, aj

i       j 
ai          aj

(   i     j )ai  aj 

4.	 Equally valid means no item is any better instance of the aspect we are trying to measure 
	 than any other item.  The items are truly interchangeable and we will not rely on the data to 
	 tell us how they should be weighted.  Empirical weights will generally lower the estimated  
	 standard errors because they will account for more of the variance, perhaps idiosyncratic, in  
	 the observed data.  The cost is this increased reliability is reduced validity.  The definition of  
	 the construct has changed because the empirical weights are different than the developers of  
	 the instrument envisioned.  Rasch analysis is willing to risk slightly higher standard errors  
	 in order to preserve the purest definition of the construct.  IRT textbooks refer to this property 
	 as “equal item discriminations”; just another set of item parameters to be estimated.  

5.	 Scaling relates directly to the one aspect of the agent and the object that we are trying to  
	 measure and which are parameterized in the model.  Rasch models have sufficient statistics for  
	 managing the estimation of these parameters, allowing scaling of the agents without  
	 referencing the objects and vice versa.  There are no sufficient statistics for the weights, and,  
	 hence, no such thing as sample-freed estimates of them.
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6.	 With a logit for bowmanship of 0.75, the probability of hitting a level, large, near target  
	 (logit difficulty of 0.0) is:	

pr (hit       0.75,     0.0)              0.68
e 0.75

1e 0.75

        Page Sheriff Knight R Hood W Tell 
      Logit 0.25 0.75 1.75 3.25 3.50 
Downhill Small Far 3.5 0.04 0.06 0.15 0.44 0.50 
Level     3 0.06 0.10 0.22 0.56 0.62 
Downhill Large   2.5 0.10 0.15 0.32 0.68 0.73 
Level     2 0.15 0.22 0.44 0.78 0.82 
Downhill Small Near 1.5 0.22 0.32 0.56 0.85 0.88 
Level     1 0.32 0.44 0.68 0.90 0.92 
Downhill Large   0.5 0.44 0.56 0.78 0.94 0.95 
Level     0 0.56 0.68 0.85 0.96 0.97 

7.	 Our expected count is the probabilities summed over whatever sample we have.  The  
	 probabilities and the counts are both sample dependent.  Specific objectivity says the item  
	 parameter estimators are not.  Because the person and item parameters can be separated:

n10                                              2                                  .p10                 
N

l

B 2

N

l (B 1 )(B 2 ) 
N

l

B

(B 1 )(B 2 )

	 Similarly for n01, so 

n10n01  (1 2  )                                    and                             .      
N

l

B

(B 1 )(B 2 )
n10

n10n01

2
12

8.	 If the probability of pass is pe x/(1e x ), the probability of fail is 1p1 / (1e x ).  	
	 The odds of pass to fail is p / (1p) = ex and the natural logarithm is x.

9.	 Because this table is evaluated at logit 0, which is the step parameter for category 2, the  
	 probabilities for categories 1 and 2 are equal (and, because of the disorder, category 3 is much  
	 more likely than either 1 or 2 for a person at this location).

k k exp(0- k) Numerator Probability 
0   1 0.01
1 -3 20.09 20.09 0.20
2 0 1.00 20.09 0.20
3 -1 2.72 54.60 0.55
4 3 0.05 2.72 0.03

10.	 Nothing.  The five, or anything else, would appear as a factor in each of the numerators and  
	 their sum.  Because it occurs once in each of them, it cancels out when the division is done for  
	 the probabilities.
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11.	 Wright’s term sample-free may be misleading.  The model is not magic.  All parameters must  
	 still be identified.  In order to compare any two components, there must be a way to arrange  
	 the data that includes a simple contrast between the two components.  Specific objectivity  
	 means that the result of the comparison does not depend on what sample was used to form  
	 this contrast; it doesn’t mean you can do anything without data.

12.	 Rasch’s stipulation that “the relationship should be found in several sets of data which differ  
	 materially in some relevant respects” (Rasch, 1960, p. 9) applies to items as well as people.   
	 Using items of different types broadens the definition of the construct and strengthens the  
	 validity arguments.  If we use stationary bull’s-eyes exclusively to gather evidence about  
	 bowmanship, we can never know whether we are measuring bowmanship or proficiency at  
	 hitting stationary bull’s-eyes.  This may be good for winning competitions; not so good for  
	 winning wars or bringing home the king’s venison.

13.	 We could treat ability and difficult in exactly parallel manners but that is less efficient.  
	 Because the number of people is usually much larger than the number of items, using the  
	 observed item scores and the frequencies saves time and effort when estimating difficulties.   
	 To estimate abilities, we needed to know the difficulty of every item on the test.  Then we  
	 estimated the ability for every possible score on the test without worrying about whether or 
	 not anyone got that score.  We could do the same thing for items.  If we know the ability of 	
	 everyone who took the test, we could estimate the difficulty for every possible item score from 	
	 one to the number of people minus one with no additional information.  It is also possible to  
	 use the analogous procedure presented to estimate difficulties to estimate abilities, but we  
	 frequently want the ability estimates for all scores rather they have happened yet or not.

14.	 In order to solve the equations, we need to impose one constraint and we would like that to  
	 be tj0.  If there is a link tij connecting every pair of forms, then the row sum is:
 

Ti       (titj )kti   .tij  
k

jl

k

jl
tj 

k

jl

	 tj can be set to zero and the solution is easy: ti Ti /k.  If, however, the link between, say,  
	 forms 1 and 2 is missing, then the row sums are incomplete because row 1 is missing 		
	 (t1t2) and row 2 is missing (t2t1). 

Ti
     kt1tj(t1t2 ) .tij  

ij≠1,2

	 Writing it in this form, we have kept the complete sum of the ti that we want to set to zero  
	 but have a little left over.  Simplifying a little, we have:

Tl
 (k1)t1t2  .

	 which says we reduce the coefficient for the diagonal term by one and add one to the  
	 off-diagonal term.  The equation for form 2 would take the same form.  The equations for  
	 forms 1 and 2 now need to be solved simultaneously but how hard is that?
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15.	 No single fit statistic is necessary because there are multiple, equally defensible ways one can  
	 approach the analysis and arrange the data.  No single fit statistic is sufficient because there is  
	 an unimaginable number of ways that the data can depart from the model.  No single statistic  
	 can be powerful against all alternative hypotheses.

16.	 Number one, we don’t always assume that.  Sometimes the assumption is that a subset,  
	 perhaps just one, of the items have some average difficulty.  Second, after the items have  
	 been linked to another form or to a bank, the center of the items will have been shifted away  
	 from zero even if zero was the initial assumption.  Third, we may want to tailor the testing to  
	 match the expected location of individual students. If students take different forms, the forms  
	 will, in general, have different centers.
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