INFLUENCES OF HIERARCHICAL LINEAR MODELING IN EVALUATION

Kristin A. Hobson Abhik R. Roy <u>Chris L. S. C</u>oryn

- What is Hierarchical Data
- What is hierarchical linear modeling (HLM)?
- Rationale for HLM
- Advantages of HLM
- Limitations of HLM
- HLM as a Framework for Evaluating Programmes

What is Hierarchical Data?

- Primary School Example
 - Students in classrooms (2-levels)
 - Students in classrooms in schools (3-levels)
 - Students in classrooms in schools in regions (4-levels)
- International Development Example
 - Families in villages (2-levels)
 - Families in villages in countries (3-levels)
 - Families in villages in countries in continents (4-levels)

What is Hierarchical Data?

- Repeated measures in level-1
- Repeated measures in level-1 and in level-2
- Repeated measures in level-1, in level-2, and in level-3

How to Account for Hierarchical Data?

Example: Students in Classrooms

- Option A: Treat data as level-1
 - Problem: Violate assumptions of GLM
- Option B: Treat data as level-2
 - Problem: Lose data
- Option C: Model the hierarchical structure of the data
 - Hierarchical Linear Modeling (HLM): Education and Psychology
 - Multilevel models: Statistics
 - Mixed effects models: Biostatistics
 - Random effects models: Biostatistics
 - Random coefficient models: Econometrics
 - Raudenbush, S. W., & Bryk, A. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods. (2nd Ed.). Thousand Oaks, CA: Sage.

Benefits of HLM

- Improved estimation of individual effects
- Formulate and test hypotheses of cross-level effects
- Partition variance and covariance across levels

Improved Estimation of Individual Effects

- □ Braun, Jones, Rubin, & Thayer (1983)
 - Use of standardized test scores for selecting minority applicants for admission to graduate business schools
- Newton & Llosa (2010)
 - Comparison of student outcomes between and within classrooms, and between schools
 - Determination of programme factors that affect outcomes of students by characteristics

Newton, X. A., & Llosa, L. (2010). Toward a more nuanced approach to program effectiveness assessment: Hierarchical linear models in K–12 program evaluation. *American Journal of Evaluation*, 31(2) 162-179.

Raudenbush, S. W., & Bryk, A. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods. (2nd Ed.). Thousand Oaks, CA: Sage.

Formulate and Test Hypotheses of Cross-Level Effects

Example: Students Nested in Schools

- Dependent variable: Student achievement
- Level-1 covariate: Racial and ethnic status
- Level-2 covariate: School type (public, publicprivate, private)

Partition Variance and Covariance Across Levels

Example: Students nested in Schools

- Dependent variable: Achievement
- Level-1 Variance: Between students within schools on achievement
- Level-2 Variance: Between schools on achievement

Limitations of HLM

- Sufficient data at each level required
- One dependent variable only
- Estimation of error

Example: International Development Programme

Sample Evaluation Questions

- What was the change in nutritional status for Heifer International project families?
- 2. Did the change in nutritional status differ by villages within Albania, Nepal, and Uganda?
- 3. How much of the variability in nutritional status is within villages? Between villages?

Sample

Table 1

Sample Sizes by Village and Country with Listwise Deletion

Site	Albania	Nepal	Uganda
1	10	9	12
2	16	7	12
3	12	11	12
4	14	6	12
5	15	9	12
6	16	11	11
7	14	7	12
8	15	8	12
Total	112	68	95

Indicators

Nutritional change

Determined by subtracting the reconstructed baseline nutritional status (range: 0 – 20 units) from the nutritional status at the time of the interview for each family (range: 0 – 20 units)

- Nutritional status
 - Measured through four criteria: (a) staples, (b) supplements, (c) protein, and (d) adequate storage procedures
 - Each criterion ranged from 0 to 5 units

Establishing Models

- First establish and run the unconditional model (excludes covariates)
- Second include covariates, making the unconditional a conditional model

HLM Unconditional Model

$$\Box \text{ Level-1 Model: } Y_{ij} = \beta_{0j} + r_{ij}, \qquad r_{ij} \sim N(0,\sigma^2)$$

□ Level-2 Model:
$$\beta_{0i} = \gamma_{00} + u_{0i}$$
, $u_{0i} \sim N(0, T_{00})$

 $\Box \text{ Mixed Model:} \quad Y_{ij} = \gamma_{00} + u_{0j} + r_{ij}$

HLM Conditional Model

$$\Box \text{ Level-1 Model: } Y_{ij} = \beta_{0j} + r_{ij}, \qquad r_{ij} \sim N(0,\sigma 2)$$
$$\Box \text{ Level-2 Model: } \beta_{0j} = \gamma_{00} + \gamma_{01} * \text{NEPAL}_{i} + \gamma_{02} * \text{UGANDA}_{i} + u_{0i}, \qquad u_{0i} \sim N(0, T_{00})$$

□ Mixed Model: $Y_{ij} = \gamma_{00} + \gamma_{01}^* NEPAL_i + \gamma_{02}^* UGANDA_i + u_{0i}^+ r_{ij}$

Results: Unconditional Model

Table 2

Unconditional Model Fixed Effects

Fixed Effect	Coefficient	SE	<i>t</i> -ratio	df	<i>p</i> -value
<i>γ</i> 00	5.56	0.47	11.91	23	< 0.001

Table 3

Unconditional Model Variance Components

Variance	SD	Variance Component	df	χ^{2}	<i>p</i> -value
t ₀₀	2.13	4.53	23	147.08	< 0.001
S ²	3.17	10.08			

Results: Unconditional Model

- On average, the villages mean change in nutritional status was 5.56 units (p < 0.001)</p>
- 31% of the total variance in nutritional change statuses lies between villages
- 69% of the total variance in nutritional change statuses lies within villages

Results: Conditional Model

Table 4

Conditional Model Variance Components

Variance	SD	Variance Component	df	χ^2	<i>p</i> -value
t ₀₀	1.75	3.06	21	91.28	< 0.001
S ²	3.18	10.10			

Table 5

Conditional Model Fixed Effects

Fixed Effect	Coefficient	SE	<i>t</i> -ratio	df	<i>p</i> -value
<i>γ</i> 00	3.88	0.62	6.22	21	< 0.001
7 01	2.04	0.93	2.18	21	0.041
<i>Y</i> 02	3.05	0.91	3.34	21	0.003

Results: Conditional Model

- 23% of the original between village variance was explained (p < 0.001)</p>
- Average village mean nutritional change status in Albania was 3.88 units (p < 0.001)
- Average village mean nutritional change status in Nepal was 5.92 units (p = 0.04)
- Average village mean nutritional change status in Uganda was 6.93 units (p = 0.003)

Results

- Families in the villages statistically increased their nutritional statuses
- Families' nutritional change statuses statistically differed by villages
- □ 23% of the remaining between village variance was significant (p < 0.001)
 - Existence of village-level variables that were responsible for differences in family nutritional change statuses, for which the conditional level two model did not account

Applications of HLM in Evaluation

- Appropriately model evaluative data
- Accurately estimate programme effect
- Estimate cross-level interactions (i.e., how level-2 variables affect level-1 relationships)
- Determine variability across and between cases
- Determine which covariates influence programme effect

References

- Braun, H. I., Jones, D. H, Rubin, D. H., & Thayer, D. T. (1983). Empirical Bayes estimation of coefficients in the general linear model from data to deficient rank. *Psychometrika*, 489(2), 171-181.
- Newton, X. A., & Llosa, L. (2010). Toward a more nuanced approach to program effectiveness assessment: Hierarchical linear models in K–12 program evaluation. *American Journal of Evaluation*, 31(2) 162-179.
- Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods. (2nd Ed.). Thousand Oaks, CA: Sage.
- Spybrook, J. K. (2013). Special Topics in EMR: Hierarchical Linear Modeling. Kalamazoo, MI: Western Michigan University.

Thank You!

- Kristin A. Hobson
 - kristin.a.hobson@wmich.edu
- Abhik Roy
 - abhik.r.roy@wmich.edu
- Chris L. S. Coryn
 chris.coryn@wmich.edu
- Interdisciplinary Ph.D. in Evaluation Program Western Michigan University 4405 Ellsworth Hall Kalamazoo, MI 49008-5237