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Multilevel models (MLMs) are flexible in that they can be employed to obtain item and person 
parameters, test for differential item functioning (DIF) and capture both local item and person 
dependence. Papers on the MLM analysis of item response data have focused mostly on theoretical 
issues where applications have been add-ons to simulation studies with a methodological focus. 
Although the methodological direction was necessary as a first step to show how MLMs can be 
utilized and extended to model item response data, the emphasis needs to be shifted towards 
providing evidence on how applications of MLMs in educational testing can provide the benefits 
that have been promised. The present study uses foreign language reading comprehension data to 
illustrate application of hierarchical generalized models to estimate person and item parameters, 
differential item functioning (DIF), and local person dependence in a three-level model. 

Data in social sciences in general and educational 
measurement in particular have a hierarchical structure. 
In other words, students are nested in classes which are 
in turn nested in schools. Nested data are locally 
dependent. As a result, the average correlation between 
variables measured on students from the same 
school/class will be higher than the average correlation 
between variables measured on students from different 
schools/classes. The within-class correlations would 
be, for example, due to a common teacher, the same 
syllabus, or the same textbook, and within-school 
correlations, among other things, may be the result of a 
common set of administrative policies or the selection 
processes (for example, some schools may select highly 
talented students or some may attract students form 
either high or low social economic status levels). Due 
to these clustering effects, a fundamental assumption 
underlying a majority of parametric statistical tests is 
violated (Goldstein, 1995; Raudenbush & Bryk, 2002). 
Local independence assumption holds that there should be 
no relationship among individuals in the sample for the 
dependent variable once the effect of the independent 
variable has been taken into account.  

Non-independence assumption is usually taken for 
granted in conventional statistical tests such as 
regression and ANOVA. Violation of this assumption 
leads to underestimation of standard errors (SE). Since 
statistical significance of a predictor variable is judged 
by the ratio of its size to its SE (a significant coefficient 
should be at least twice as big as its SE), an 
underestimated SE would result in obtaining a 
significant effect when it does not really exist (Hox, 
2010; Raudenbush &Bryk, 2002). Multilevel models 
(MLM) have been designed to handle 
interdependencies among the data points. In what 
follows first MLMs in general and hierarchical 
generalized linear models (HGLM) in particular are 
described. Then the ways they have been and could be 
used in educational testing is reviewed. Finally, the 
application of the Rasch HGLM with the HLM 
software is demonstrated and the outputs are 
interpreted. 
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Multilevel Models 

MLMs have been differently termed as linear 
mixed models (Littell, Milliken, Stroup, &Wolfinger, 
1996), hierarchical linear models (Raudenbush & Bryk 
1986), and random coefficient models (Longford 
1993). MLMs are extensions of standard multiple 
regression. They specifically account for dependency in 
the data with simultaneous multiple regressions at 
different levels. To analyze relationships between a 
dependent and independent variables in a hierarchical 
data set where, for example, students are nested in 
classes which are in turn nested in schools, a three-level 
regression model is formulated. The first and the 
lowest level is the student level, the second level is class 
level, and the third level is school level. It goes without 
saying that this 3-level model can be extended to 
include a fourth level (e.g., neighborhood level). In all 
the MLMs there is a single outcome or response 
variable which is measured at the lowest level and there 
could be explanatory variables at all the levels. For 
example, imagine we want to explore the effect of 
factors (i.e., knowledge of vocabulary and knowledge 
of grammar) that might affect foreign language reading 
comprehension. Suppose further, the data have been 

collected from j  universities (j=1…J) with jn  students 

in each university. The first level (i.e., student-level) 
regression equation can be set up as in Equation 1:                              

0 1 2j j ij j ij ijreading vocabulary grammar eβ β β= + + +  (1) 

where reading is the outcome, 0 jβ is the intercept (i.e., the 

mean reading comprehension of  university j ), 1 jβ
and 2 jβ are the slopes (i.e., the mean effects of the 

person-explanatory variables of vocabulary and 
grammar, respectively, on reading comprehension in 

university j ) and ije represents the deviation of reading 

comprehension of student i from the intercept (the 
mean reading comprehension of his/her respective 
university). Equation 1 is different from a standard 
multiple regression in that, unlike in standard multiple 
regression where we assume regression coefficients 
(i.e., intercepts and slopes) are constant1 (i.e., fixed) 
across all the students regardless of the university they 
belong to, in a MLM each cluster (here university) can 

                                                 
1 Of the different ways fixed and random effects have been 

conceptualized, I have adopted the distinction by Kreft and De 
Leeuw (1998, p. 12). 

be assumed to have a different intercept coefficient 

0 jβ  (here mean reading comprehension) and different 

slope coefficients 1 jβ  and 2 jβ  (here mean impact of 

vocabulary and grammar, respectively, on reading 
comprehension). Put another way, the intercept and 
the slopes are assumed to be random (i.e., vary) across 
universities. The group-specific coefficients are 
indicated by subscript j  attached to each coefficient. 

With MLMs researchers can test whether the 
coefficients i.e., mean reading comprehension 
(intercept) and mean impact of vocabulary and 
grammar, respectively, on reading comprehension (the 
slopes) vary significantly across universities.  

The next step in MLM procedure is to explain 
randomness (i.e., variation) in the intercept and slopes 
across the higher level units (in this case universities). 
The level-1 coefficients which are assumed to vary 
across higher units are set up as outcome variables in 
the level-2 equations. In the present case, since the 
intercept (the mean reading comprehension) and the 
slopes (the mean impact of vocabulary and grammar) 
were assumed to vary across universities, university-
level explanatory variables (i.e., covariates) can be 
added to account for the variations of these 
coefficients at the second level. For example, 
universities in Iran, depending on whether they select 
students through screening tests, are divided into two 
broad categories: state universities and non-state 
universities. The subscripts in Equation 1 show that 
the intercept (the mean reading comprehension in each 
university) and the slopes (the mean impact of 
vocabulary and grammar in each university) are 
random across universities. Therefore at second level 
we need to have three regression equations one for the 
intercept as the outcome variable and two for the 
slopes as outcome variables as follows:                                                 

0 00 01 0j j jZ uβ γ γ= + +  (2) 

 

1 10 11 1j j jZ uβ γ γ= + +  

2 20 21 2j j jZ uβ γ γ= + +  
(3) 

 

Where 00γ is the average reading comprehension 

across all the universities (grand mean), 10γ  and 20γ are 

the mean effect of vocabulary and grammar, 
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respectively, across all the universities, 0 ju represents 

deviation of the mean of the university j from the 

grand mean, 1 ju and 2 ju  represent the deviations of 

the mean impact of vocabulary and grammar, 
respectively, on reading in university j from the 
respective means across all the universities. Equation 2 
predicts average reading comprehension in each 

university (the intercept 0 jβ ) by university type (Z) (i.e., 

state vs. non-state). As university type is a binary 
explanatory variable, in this case coded as zero for non-
state universities and one for state universities, a 

positive 01γ indicates that the average reading 

comprehension is higher in state universities. 
Equations in 3 state that the relationship between 
grammar and reading comprehension and vocabulary 
and reading comprehension depend on the university 

type. Negative values for 11γ and 21γ  indicate that the 

effect of vocabulary and grammar, respectively, on 
reading comprehension are stronger for non-state 

universities. Conversely, positive values for 11γ and 21γ  

indicate that the effect of vocabulary and grammar, 
respectively, on reading comprehension are stronger 

for state universities. If the variances of the u-terms 0 ju

, 1 ju , and 2 ju  are significant, more university-level 

covariates should be added to capture the variations. 

Alternatively, the slopes can be assumed fixed, that 
is the effect of vocabulary and grammar can be 
assumed as being the same across universities. In that 

case 1 jβ and 2 jβ  should be included into the level-1 

model without the subscripts j. Accordingly, we would 

not need 1 jβ and 2 jβ equations at Level 2. 

Hierarchical Generalized  
Linear Models 

MLMs assume a continuous dependent variable 
with a normal distribution. However, if the dependent 
variable is a dichotomous variable, both the continuous 
dependent variable and the normality assumptions are 
violated (Hox, 2010). For situations where the 
dependent variable is non-normal non-continuous and 
the relationship between the predictor variable and the 
dependent variable is not linear, a variant of MLMs 
called hierarchical generalized linear model (HGLM) is 
appropriate. 

Standard Rasch model has been shown to be a 
special case of HGLM (e.g., McClellan & Donoghue, 
2001; Kamata, 2001, 2002; Miyazaki, 2005; 
Raudenbush, Johnson, & Sampson, 2003; Williams & 
Beretvas, 2006). In the Rasch model formulation of the 
HGLM (Rasch HGLM) item response data are treated 
as repeated observations where each test taker 
responds to multiple items. Multiple responses from 
the same subject cannot be regarded as independent 
from each other. As a case, take the reading 
comprehension example above. Each person possesses 
a different level of reading comprehension which is 
going to affect all the responses from the same person 
thus rendering these different responses inter-
dependent rather than independent. In the Rasch 
HGLM item response data are treated as hierarchical 
data, where items are nested within persons. Unlike 
MLMs where persons are level one, in the Rasch 
HGLM items are level one and persons are level two. 
In what follows it is shown how the standard Rasch 
model can be derived from HGLM. 

 

Hierarchical generealized  
Rasch model 

Kamata (2001) showed how Rasch model can be 
formulated within the framework of a hierarchical 
model. In his formulation the first level is an item level 
model and the level-2 model is a person level model.  

The level-1 model, the item level model, for item i 

(i =1,…, k) and person j (j = , …, n ) is    

0 1 1 (k 1) (k 1)
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 (4) 

 

where ijX is the ith item indicator which is a 

dummy variable for person j, with values 1 when the 
observation is the ith item and 0 otherwise. 

log( )
1

ij

ij

p

p−
 is the logit link fucntion whereby the 

log odds of getting item i correct for the person j is 

predicted.  ijp  is the probability that person j succeeds 

on item i  and 1 ijp−  is the probability of failure on the 
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item. In HGLMs the link function linearizes the 
relationship between the predictor variables and the 
dependent variable and restricts the range of the 
predicted values to match the distribution of the 
dependent variable. 

To identify the item-level model, some constraints 
need to be imposed. Kamata (2001) suggested that 
identification be carried out by using one of the items 
as the reference item thereby dropping the dummy 
variable for that item form the model and including an 
intercept term which is the effect of the reference item. 

In Equation 4, 0 jβ is an intercept term which is the 

expected effect of the reference item for  person j, and  

1 jβ to ( 1)k jβ −  are coefficients associated with the effect 

of Item 1 to Item k-1 (one less than the number of 
items since the dummy variable for the reference item 
is dropped).   

In the Rasch HGLM at Level 2, the intercept 0 jβ  

is assummed to be varying (random) across persons 
(the random intercept is introduced to take inter-
dependencies among items answered by the same 
person ) and the other items’ effects are assummed to 
be constant (fixed) across persons as in Equation 5: 

0 00 0

1 10

( 1) ( 1)0

j j

j

k j k

rβ γ
β γ

β γ− −

= +

=

⋅
⋅
⋅

=

 (5) 

 

As a result, level-1 and level-2 models can be 
combined so that the probability that pereson j answers 
item i correctly is expressed as: 

0 0 00

1

1 exp[ {r ( )}j i

ij
p

γ γ
=

+ − − −
 (6) 

 

 Equation 7 is algebrically equall to the Rasch 
model: 

                                                       

1
,

1 exp[ ( ]j iθ δ+ − −
 (7) 

 

where jθ , person ability in Equation 7, is 

equivalent to 0 jr , the random effect of the intercept 

and iδ item difficulty in Equation 7 is equivalent to 

0 00iγ γ− (the effect of each item subtracted from that of 

the reference item).   

Kamata’s formulation can be extended to three- 
and four-level HGLMs.  

 

HGLM vs. Conventional Item 
Response Theory Models 

Educational measurement data can be used to 
fulfill two broad purposes (De Boeck & Wilson, 2004): 
(a) to describe performance of individual test takers on 
a test and (b) to explain item responses in terms of 
other explanatory variables. Accordingly, the two 
purposes lead to two approaches: descriptive measurement 
approach and explanatory approach. The explanatory 
approach is broader and can be seen as complementary 
to the descriptive approach. Conventional IRT models 
are suitable for the fulfillment of the descriptive 
purpose. Although they can be used to serve the 
explanatory purpose, this can only be carried out in a 
two-step procedure (De Boeck & Wilson, 2004), with 
measurement as the first step and correlating the 
derived test scores with external variables as the next 
step. Unlike conventional IRT models which estimate 
person abilities first and then investigate the effect of 
person-varying explanatory variables on ability 
estimates, HGLMs take a one-step approach to 
investigating the effect of person variables on ability 
estimates (Kamata, 1998). Therefore, estimates of item 
and person parameters are expected to be more precise 
(Mislevey, 1987).  

Most existing IRT models are special cases of 
HGLMs. A HGLM perspective on item response data 
broadens the domain of IRT models and facilitates 
their explanatory uses beyond their standard 
descriptive uses (De Boeck & Wilson, 2004). The 
HGLM perspective has additional advantages over the 
standard IRT approach (De Boeck & Wilson, 2004, 
p.7): (a) The approach is a general one and therefore 
also flexible, and (b) The approach connects 
psychometrics strongly to the field of statistics, so that 
a broader knowledge basis and literature become 
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available and (c) The availability of generalized 
statistical software makes the implementation of new 
models developed for specific situations much more 
straightforward than it has been in the past, where 
specific-purpose programs could be used only under 
less general circumstances. More specifically, HGLMs 
are flexible in that they can be conveniently used to 
estimate item and person parameters, differential item 
functioning (DIF), and the effect of person-level 
predictors on ability measures and item-level predictors 
on item difficulty, simultaneously. They can also be 
used to investigate local item dependence (i.e., testlet 
effect), local person dependence and differential testlet 
functioning. 

Rasch HGLM extensions  
and Previous Applications  

Papers on the Rasch HGLM have focused mostly 
on theoretical issues where applications have been add-
ons to studies with a methodological focus. Kamata 
(2001) showed that HGLM is equivalent to the Rasch 
model. He also showed how the two-level HGLM can 
be extended to a three-level latent regression model 
which allows investigation of students across groups. 
Jiao, Wang, and Kamata (2005) extended Kamata’s 
two-level model to capture item local dependence. 
Their three-level model can be used to estimate item 
difficulties, person abilities, DIF, and testlet effect. Jiao, 
Kamata, Wang, and Jin (2012) extended Jiao et al.’s 
(2005) model to a four-level model which permits 
simultaneous modeling of both item and local 
dependence. Beretvas and Walker (2012) developed a 
cross-classified multilevel model to handle testlet-based 
dependencies. Their model allowed simultaneous 
investigation of DIF and differential testlet 
functioning. Ravand (in press) employed Beretvas and 
Walkers’ model to estimate LID, DIF, and differential 
testlet functioning in a high stakes reading 
comprehension test. Beretvas, Cawthon, Lockhart, and 
Kaye (2012) in a pedagogical paper explained 
similarities and difference of the two-level cross-
classified model and the conventional two-level model. 
They applied the two models to investigate DIF and 
differential facet functioning (Meulders & Xie, 2004) in 
accommodated item scores. Van den Noortgate, De 
Boeck, and Meulders (2003) demonstrated how several 
common IRT models can be derived from the 
multilevel logistic model. Weirich, Hecht, and Bohme 
(2014) showed how item position effects can be 

modeled using the linear logistic test model within the 
framework of HGLMs. Debeer and Janssen (2013) 
proposed a general framework for detecting and 
modeling item position bias effects using explanatory 
IRT models in the framework of HGLM. Randall, 
Cheong, and Engelhard (2011) described how HGLMs 
can be used to investigate measurement invariance, 
specifically DIF, within the context of assessing 
students with disabilities. Albano (2013) also 
demonstrated how HGLMs can be employed to model 
item position effect. He argued that the HGLM 
approach is advantageous over the previously used 
models for this purpose in that it can estimate position 
effects simultaneously with item and person 
parameters.  

Although the methodological direction was 
necessary as a first step to show how MLMs can be 
utilized and extended to model item response data, the 
emphasis needs to be shifted towards providing 
evidence on how applications of MLMs in educational 
testing can provide the benefits that have been 
promised. 

 

Data Analysis     

To illustrate the analysis procedures involved in 
the Rasch HGLM, university entrance examiantion 
(UEE) data of the applicants into the Masters’ English 
programs at the Iranian state univerisites in 2012 are 
used. There were  21640 (71.3 % female and 26.8 % 
male) participants who took the test in this year. The 
participants received their Bachlors’ degrees mostly 
from four univerisity types in Iran: (a) state universities 
which do not charge any tuition fees, (b) Azad 
universities which charge tuition fees (c) Non-profit 
Non-government universities which charge tuition 
fees, half as much as those of Azad universities, and (d) 
Payam-e-Noor universities which charge tuition fees as 
much as those of  Non-profit Non-government 
universities but do not offer regualar classes. UEE is 
composed of two main sections namely general 
English (GE) section and content knowledge section. 
For the purpose of the present study the data for the 
reading section of the GE part of the UEE is analyzed. 
From among the 21640 participants 1298 persons were 
excluded from the analysis since they attended a 
university at Bachelor level which had less than 10 
participants taking the test. The remaining 20342 
students were from 227 universities.  
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Data analysis illustration is carried out using HLM 
7.01 (Raudenbush, Bryk, Cheong, Fai, Congdon, & du 
Toit, 2013). HLM is a commercial software, two free 
versions of which are also available: (a) the student 
edition which is restricted in the size of the model one 
wants to analyze, (b) The 15-day tiral version which has 
got all the capabilities of the full version and can be 
requrested from the publishing company at 
http://www.ssicentral.com/hlm/downloads.html. 

Data file preparation 

Researchers usually input their data into SPSS in 
‘wide’ format for conventional analysis purposes. For 
the purpose of Rasch HGLM analysis, the ‘wide’ data 
format should be restructured into the ‘long’ format. 
Moreover, for each item a dummy indicator should be 

created so that qijX is the qth dummy variable for 

person j, with values 1 when q = i, and 0 when 1q ≠ , 

for item i. To convert the data into ‘long’ format, go to 
Data tab in the SPSS file which includes the data  and 
then to Restructure as shown in Figure 1.    

 

Figure 1. Restructuring 1. 

Since the intent is to convert the ‘long’ form into 
‘wide’ (i.e., convert variables into cases), in the next 
dialog box go with the SPSS’s default (i.e. “Restructure 
selected variables into cases”), as shown in Figure 2 
and then click Next. 

 

Figure 2. Restructuring 2. 

Since the intention is to create just one new 
variable (i.e., item) from a set of columns in the old 
data file (i.e., Item1 through Item60), in the next dialog 
box leave the SPSS’s default unchanged because it 
serves our purpose right and click Next as shown in 
Figure 3. 

 

Figure 3. Restructuring 3. 

In the next window, from the Case Group 
Identification section choose Use selected variable 
and then select the ‘id’ variable from the Variables in 
the Current File in the left box and move it into the 
box in front of the Variable in the right. Then choose 
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Item1 through Item60 variables from the Variables in 
the Current File box and move them into the box 
under the Variables to be Transposed. One can 
optionally change the name of the Target variable 
from trans1 (which is the default of SPSS) as shown in 
Figure 4. 

 

Figure 4. Restructuring 4. 

 

In the next few dialog boxes, go with the SPSS’s 
defaults and just click Next in each dialog box and you 
will come up with the ‘long’ data file.  

In the next step, we need to create dummy 
variables for the items. It can be much more 
conveniently carried out through writing a set of 
commands in the SPSS Syntax Editor. From the File 
menu select New and then syntax. In the Syntax 
Editor window type the following commands as shown 
in Figure 5: 

Compute x1 = (item=1). 
Compute x2 = (item=2). 
Compute x3 = (item=3). 
Compute x4 = (item=4). 
Compute x5 = (item=5). 
. 
. 
. 
Compute x60 = (item=60). 
;EXECUTE. 

Then select all the commands and from the menu 
above click on the Run Selection button, as shown in 
Figure 5. Running this command will return dummy 
variables X1 through X60 for Items 1 through 60. 

 

Figure 5. Dummy item coding. 

 

HLM works with either separate data files for each 
level or a single data file which contains information on 
all the levels. For the purpose of illustration, 
information for each level was saved in a separate SPSS 
file.  It is worthy of mention that HLM requires that 
data in all the data files should include an ID variable 
for the respective level and IDs for all the levels above 
it and they should be sorted according to the ID of the 
highest level. In a two-level model, for example, where 
the first level is the item level and the second level is 
the person level, both the item and person files should 
be sorted according to person ID.  And in a three-level 
model where the third level is class or university, all the 
three data files should be sorted according to 
class/university ID. Figure 6 shows an excerpt of the 
item-level (level-1) data file.  

As one can see the first level data file has been 
sorted according to the third-level IDs (i.e., uniID). 
The first column is university ID (uniID), the second 
column represents data on student ID (stID), the third 
column display item id (item) information, and the 
fourth column is a vector of item responses  where 1 
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indicates a correct answer and 0 indicates an incorrect 
answer. Since item responses are arrayed in a column 
and there are 60 items on the test, data for each test 
taker consists of  60 rows.  Put another way, ID for 
each student is repeated 60 times which results in 
60 20342 1220520× =  rows of  data. From the fifth 
variable onward, the dummy variables for each item 
(X1 to X60) are displayed.  

Figure 7 displays the person-level data file. As the 
reader might note, the second-level data file has also 
been sorted according to the highest level ID variable 
(uniID). This data file includes uniID, stID, and 
second-level related variables such as gender and grade 
point average (gpa). 

Finally, the third-level data file includes university 
ID (uniID) and university-related variable of university 
type (unitype). A slice of the third-level data (university 
in this case) is displayed in Figure 8.  

Therefore, an important point to note about the 
data files is that the highest-level ID variable (here 
uniID) should appear in the data files for all the three 
levels and exactly in the same order.  

 

 

 

Figure 7. Person-level data file. 

 

 

 

 
Figure 6. Item-level data file. 
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Figure 8. University-level data file. 

 

Working with HLM 

In the next step, the models for different levels 
should be specified. HLM stores data in its own MDM 
format which can be created from SPSS, Stata, SAS, 
and SYSTAT.  To create the MDM file, after you run 
the HLM 7, select “Make the new MDM file” and then 
“Stat package input” from the file menu, as shown in 
Figure 9. The latter is selected since our data are stored 
in a statistical package (in this case SPSS).  

 

Figure 9. MDM construction 1. 

In the next dialog box the type of the MLM 
should be selected. For simple two-, three-, and four-
level MLMs the respective model should be selected 
from the upper section of the dialog box. For the 
purpose of the present study select HLM3 option 

because there are three levels: items (level 1) nested 
within students (level 2) and students in turn nested 
within universities (level 3). Then click OK (Figure 10).  

 

Figure 10. MDM construction 2. 

In the next dialog box, click the Browse button 
for each respected level, as shown in Figure 11, and go 
to the directory where each of the data files have been 
saved. As soon as the data files are located, the Choose 
variable buttons for each respective level are activated. 
Click the buttons and specify the variables related to 
each level as shown in Figure 11. For the level-1 model  

 
Figure 11. MDM construction steps. 

 

in the present study the ID variables for all the three 
levels, the first-level-specific variables such as 
“response” and the dummy variables for the items 
should be specified. For Level 2, the ID variables for 
Levels 2 and 3 and second-level-related variables of 
gender and 'gpa' should be specified. Finally, for the 
third level, university ID (uniID) and university type 
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(unitype) should specified. Save the MDM template by 
giving it a name and clicking “save mdmt file”, as 
specified in Figure 11. To complete the model 
construction process, click Make MDM. When the 
MDM is created click Done to exit the screen. 

 

Specifying an intercept-only (null) model 

An important step before embarking upon 
multilevel analysis is the inspection of the amount of 
dependence between observations (i.e., data points). 
Intraclass correlation (ICC) is an index of the amount 
of within-cluster dependency. A high ICC indicates 
that the average correlations between data points (i.e., 
scores or item responses) from the same cluster (here 
university) are higher than the average correlation 
between scores obtained from different cluster. The 
more similar within-group observations to each other 
are and the more different they are than observations 
from other groups, the more inappropriate the 
application of the traditional statistical tests to the data 
will be. If the amount of variance in the person-level 
(Level 1 in MLMs and Level 2 in HGLMs) outcome 
variable attributable to the cluster level is negligible, 
multilevel modeling is not appropriate for the data. If 
ICC is +1 it indicates that there is no variation within 
the groups but the groups are very different from each 
other. If it is negative or approaches 0 multilevel 
analysis is not needed. To calculate ICC an intercept-
only (null) model should be used.  

How to specify a model 

To add variables at any level, first activate the 
level by pressing the respective button in the left 
panel; all the variables related to the level will appear 
in the lower part of the left panel. Click on the related 
variable and in the drop-down menu choose “add 
variable uncentered”. 

To add a random term to any equation, click on 

the equation then click on the random term ( 0 jkr  for 

Level 2 and 00ku  for Level 3) it will be activated. 

Clicking once again on the same random term, will 
delete it from the equation. To delete any covariate 
already added, click on the relevant equation the 
variables related to the respective level appear in the 
left panel. In the panel click on the variable you 
intend to delete. In the drop-down menu click on the 
only active option: “Delete variable from model”. 

An intercept-only model is a baseline model 
against which more extended models can be compared. 
A null Rasch HGLM model is a model which includes 
only item dummy variables at Level-1 and no variable 
at other levels but intercepts. Generally, to add a 
variable at any level select the level you intend to add 
the variable to from the upper part of the left panel of 
the model specification dialog box. When a level is 
selected, the level name is embraced by double “less 
than” and “greater than” symbols ( ). At 
Level 1 first, the outcome variable (in this case 
“RESPONSE”) and then all the item dummy variables 
except the one for the reference item (in this case the 
last item) should be included. To add the outcome 
variable, when the Level-1 button is activated, click on 
“RESPONSE” in the left panel and from the drop-
down menu click on “add as dependent variable”. To 
add the dummy variables, in the left panel click on 
them one by one and from the drop-down menu click 
on “add variable uncentered”, as shown in Figure 12.  

Figure 12. Model Specification. 

Since we have already specified a 3-level model 
(see Figure 10), as soon as we include the Level 1 
variables the respective Level 2 and Level 3 equations 
are automatically created. For the purpose of an 
intercept-only model leave Level-2 and 3 models intact. 
Next, press the “Run Analysis” button from the top 
menu. 

In the context of the present study, ICC is the 
proportion of the university-level variance compared to 
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the total variance. ICC can be computed through 
Equation 8.                

0

0

u

u r

ICC
σ

σ σ
=

+
 (8) 

 

Where rσ  and 0uσ  (in our case) are the variances 

of the person-level errors ijr  and the university-level 

error 0uu . As Tables 1 and 2 show, the variance 

component associated with the random term in the 
second level (here person level) is about 0.20 and that 
associated with the third level (here university level) is 
about 0.06. Plugging in the respective values into 
Equation 8, we will have 

0.06
0.23

0.06 0.20
ICC = =

+
  

Thus 23% of the RESPONSE variance is at 
university level and 77% (1-23%) is at person level. 
Thus addition of a cluster level to the model is 
warranted. 

Table 1. Final estimation of  level-2 variance 
components 

Random Effect sd 
Variance 

 Component 
d.f. χ2 p-value 

INTRCPT1,r0 0.45081 0.20323 20116 75802.42875 <0.001 

 

Table 2. Final estimation of level-3 variance 
components 

Random Effect sd 
Variance 

 Component 
d.f. χ2 p-value 

INTRCPT1/ 
INTRCPT2,u00 

0.24111 0.05814 225 4660.66298 <0.001 

 

Obtaining Item and Person parameters 

As it was mentioned above, one of the advantages 
of using the Rasch HGLM is that it circumvents the 
inconsistency associated with simultaneous estimations 
of person and item parameters (Kamata, 2001). In the 
Rasch HGLM, person parameters vary across people 
(are random) and fixed across items. That’s why in 

Equation 5 (see above) there is a random term ( 0r ) 

only for the intercept not the items. To go with the 
conventional practice in MLM, we will start with the 
simplest possible model: a model with no explanatory 
variables or an intercept-only model. As it was said 

before, person parameters in Rasch HGLM are not 
estimated they are the residuals of the intercept 
component. In a two-level Rasch HGLM, person 
abilities are level-2 residuals, which HLM generates on 
demand. In a three-level model person abilities are sum 
of level-2 and 3 residuals. To get the residuals, go to 
the “Basic Settings” menu and click “Level-2 Residual 
File” and “Level-3 Residual File” and in the new dialog 
boxes specify the format you want HLM to produce 
the file in and give the files a name and then click 
“OK”. One more thing needs to be specified in this 
dialog box: the distribution of the dependent 
variable(s). Since we are working with binary variables 
with one trial (i.e., each test taker tries each item once) 
the “Bernoulli” distribution should be specified from 
the “Distribution of the Outcome Variable” section. 
Then click on the “Run the Analysis” button to run the 
specified model. In the interest of space, only a slice of 
the level-2 and 3 residual files are displayed in Figures 
13 and 14.  

 

 

 
Figure 13. Level-2 Residuals. 
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Figure 14. Level-3 Residuals. 

 

If we were working with a two-level model person 
abilities could be directly read from the “olintrcp” or 
the “ebintrcp” columns in Figure 13. However, in a 
three-level model, as shown in Equations 13 and 14 
below, there are two random terms: one for the level-2 

intercept ( 0 jkr  in Equation 13 below) and one for level-

3 intercept ( 00ku in Equation 14 Below). The random 

term for the level-2 intercept ( 0 jkr ) indicates the degree 

to which person j in university m is deviated from the 
mean of the university m whereas the random term for 

Level 3 ( 00ku ) indicates how much the mean ability in 

university m deviates from the grand mean (i.e., the 
mean of all universities’ means). In a three-level model, 
ability of persons can be obtained by aggregating level-

2 and level-3 random terms (i.e., 00 0m jmr u+ ).  

Level-3 residuals can be read from the “olintrcp” 
or the “ebintrcp” columns in Figure 14. One can 
manually compute person parameters by summing 
level-2 and level-3 residuals. In Figure 13 the first 
column (i.e., L3D column) represents the university 
each person belongs to and the second column (i.e., 
L2D column) represents the person IDs. As one can 

read from the figure, the first 14 students belonged to 
university No. 1.  As Figure 13 shows, ability of Person 
No. 116 which belongs to University No. 1 is -.279 
logits and according to Figure 14 the mean university 
ability for the university he/she attended (university 
No. 1) is .187. Therefore his/her ability can be 
computed by summing his/her person-level ability and 
the mean university ability as follows:-.279+.187=0.092 

In a three-level model, item difficulties are 
computed based on the item effects in the third level. 
In the interest of space the effects for Items 1 to 3 are 
presented in Table 3. 

Table 3. Item effects 

Fixed Effect Coefficient 
Stand. 
error 

t-ratio 
Approx. 

d.f. 
p-value 

For INTRCPT1, ̟0 
  For INTRCPT2, β00 
 INTRCPT3, γ000 -0.334462 0.017469 -19.146 225 <0.001 

 
For X1 slope, ̟1 
  For INTRCPT2, β10 
INTRCPT3, γ100  0.827132 0.014959 55.293 1199933 <0.001 

 
For X2 slope, ̟2 
  For INTRCPT2, β20 
 INTRCPT3, γ200 -0.814584 0.016640 -48.953 1199933 <0.001 

 
For X3 slope, ̟3 
  For INTRCPT2, β30 
 INTRCPT3, γ300 -0.343377 0.015278 -22.476 1199933 <0.001 

  

000γ  is the difficulty of the reference item (-0.334462) 

and according to the Rasch HGLM the difficulties of 
other items are computed by subtracting each item’s 

effect from the reference item effect ( 00 000iπ π− − ). 

The difficulty for Item 1, for example, is computed as 
follows: 0.827132 -0.334462=0.49267 

Adding level-2 predictors 

Impact  

Beretvas, Cawthon, Lockhart, & Kay (2012) define 
impact as “difference in person abilities as a funciton 
of some person-level predictors”(p. 6). Take a simple 
case where a researcher intends to study the effect of 
test takers’ gender on their perfomance in a reading 
comprehension test. As was explained formerly, the 
usual approach in conventional IRT models is to 
estimate person and item parameters first and then in 
the second step estimate the effect of explanatory 
variables such as gender on test perofmance. However, 
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the two-step approach may not yeild accurate results. 
Approached form a Rasch HGLM one-step 
perspective, the level-1 mdoel remains the same, as in 
Equation 4, and the person-level predictor (in this case 
gender) is added to the level-2 model as in Equation 9. 

0 00 01 0

1 10

( 1) ( 1)0

(gender)

,

j j j

j

k j k

rβ γ γ
β γ

β γ− −

= + +

=

⋅
⋅
⋅

=

 
(9) 

 
 

 

 where Coefficient 01γ  represents impact. Since 0 jβ  is a 

parameter that is common to all items in the level-1 
model and the intercept value affects every item’s 

difficulty, statistically significant coefficient of 01γ  

would indicate that overall, males and females 
performed significantly differently on all of the items. 

Therefore coefficient 01γ is the difference in ability of a 

male versus a female test taker.  

Generally, to add any covariate to level-2 and 3 
equations, click on the relevant equation; all the 
variables related to the respective level appear in the 
left panel. Click on the relevant variable and from the 
drop-down menu select “add variable uncentered”. To 
add gender impact, for example, to the model, in the 
"model specification" menu click on the first line of 

the level-2 equation (the intercept equation 0π ) to 

activate the relevant variables in the left panel and then 
add the variable as explained above. A slice of the 
output is displayed in Table 4. 

Table 4. Final estimation of fixed effects: 
(Population-average model) 

Fixed Effect Coefficient 
Stand. 
error 

t-ratio 
Approx. 

d.f. 
p-value 

For INTRCPT1, ̟0 
   For INTRCPT2, β00 
    INTRCPT3, γ000  -1.854943 0.039772 -46.639 225 <0.001 

    
For GENDER, β01 
    INTRCPT3, γ010  -0.224154 0.008099 -27.678 20114 <0.001 

 

According to Figure 18, the intercept for gender (

01γ =-0.22) is significant ( p-value <0.001). The 

negative value implies that on average males had higher 
ability estimates than females by 0.22 logits (because 
the code assigned to males [i.e., 0] was lower than that 
of females [i.e., 1]).  

How much variance was explained? 

In traditional multiple regression 2R  is a gauge of 
the amount of variance explained by the predictor 
variables. In MLM the amount of variance explained 
should be examined for each level separately by 

calculating a statistic analogous to 2R . A 
straightforward approach is to compare the variance of 
the intercept in each level after addition of the 
explanatory variables with the variance component of 
the baseline model (i.e., intercept-only model). 
Raudenbush and Bryk (2002) suggested using Equation 

10 to calculate 2R  for the person-level model: 

2 2
| |2

2
|

( )e b e m

e b

R
σ σ

σ
−

=  
 

(10) 
 

where 2
|e bσ  is the person-level residual variance for the 

intercept-only model and 2
|e mσ is the person-level 

residual variance for the model with explanatory 
variable. As Table 5 shows, inclusion of gender into the 
person-level model reduced the variance component to 
about 0.17. 

Table 5. Final estimation of level-1 and level-2 
variance components 

Random Effect sd 
Variance 

 Component 
d.f. χ2 p-value 

INTRCPT1,r0 0.41352 0.17100 20114 65943.84306 <0.001 

 

As Table 1 above showed the variance of the 
intercept in the baseline model was 0.20. Plugging in 
the respective values into Equation 10 we will have  

 
2 0.20 0.17

0.15
0.20

R
−= =  

The implication is that gender explain about 15% 
of the explainable variance at person level. The 
significance variance component in Table 5 suggests 
that more person characteristic variables should be 
added. 

Estimating DIF 

DIF occurs when test takers with the same 
ability level but from different observed groups have 
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different probabilities of giving the correct answer to 
an item (Clauser and  Mazor,  1998). In other words, 
DIF refers to significant difference in item difficulties 
across different groups in the same population, which 
are matched for ability. Differences in item difficulties 
and discriminations across subpopulations with equal 
latent trait abillity are refered to as uniform and non-
uniform DIF, respectively. Rasch HGLM tests only for 
uniform DIF. To investigate DIF, a person covariate 
(here gender ) can be added as to the level-2 equation 
as follows:  

0 00 01 0

1 10 11

( 1) ( 1)0 ( 1)1

(gender)

( )

( ) ,

j j j

j j

k j k k j

u

gender

gender

β γ γ
β γ γ

β γ γ− − −

= + +

= +

⋅
⋅
⋅

= +

 
(11) 

 

                                                   

In Equation 11, 01γ  represents impact and 11γ to

( 1)1kγ − represent DIF. If the coefficient 1qγ is positive, 

the item is, after controlling for ability, easier for 
females (since females were code as 1) and if the 
coefficient is negative, after controlling for ability, the 
item is easier for males (since 0 represented males 
here).  To add gender DIF to the equation for any of 
the items, first select the respective equation and, as 
explained above, add gender. To save space, the results 
for Items 15, 16, and 18 are presented in Table 6. 

Table 6. Final estimation of fixed effects (Unit-
specific model with robust standard errors) 

Fixed Effect Coefficient 
Standard 

error 
t-ratio 

Approx. 
d.f. 

p-value 

For X15 slope, ̟15 
   For INTRCPT2, β150 
    INTRCPT3, 
γ1500  1.002693 0.088475 11.333 20107 <0.001 

   For GENDER, β151 
   INTRCPT3, γ1510  -0.673751 0.043299 -15.560 20107 <0.001 

For X16 slope, ̟16 
   For INTRCPT2, β160 
    INTRCPT3, 
γ1600  0.416603 0.073470 5.670 20107 <0.001 
   For GENDER, β161 
    NTRCPT3, γ1610  0.175237 0.038120 4.597 20107 <0.001 

For X18 slope, ̟18 
   For INTRCPT2, β180 
    INTRCPT3, 
γ1800  -0.346167 0.097776 -3.540 20107 <0.001 

   For GENDER, β181 
    INTRCPT3, 
γ1810  -0.481891 0.049642 -9.707 20107 <0.001 

 

According to Table 6, the effect of gender on the 
three items was statistically significant (p-value <0.001). 
Items 15 and 18 were easier for males as indicated by 
the negative signes(males were coded as 0) and Item 16 
was easier for females as indicated by the positive 
sign(females were coded 1).  

Rasch HGLM is flexible in that it can also test 
for unobservable (i.e., not-yet-measured) person 
characteristics as DIF source. Equation 11 above tested 
for gender DIF as an obsevable DIF source. Testing for 
unobservable sources of DIF can be carried out by 
adding a person-specific residual contributing to the 
overall difficulty of any given item through Equation 
12. That is item difficulits should be modeled as 
random rather than fixed. 

0 00 01 0

1 10 11 1

( 1) ( 1)0 ( 1)1

(gender)

( )

( )

j j j

j j j

k j k k j

r

gender r

gender

β γ γ
β γ γ

β γ γ− − −

= + +

= + +

⋅
⋅
⋅

= +

 (12) 

 

Signnificance of the random effect 1 jr indicates 

that “the item’s difficulty is affected by an , as-yet-
unmeasured person charactirsic and cannot be assumed 
as fixed across people”(Beretvas, Cawthon, Lockhar, & 
Kaye,2012,p.760). 

In what follows Items 15,16, and 18 are tested for 
unobsevable source of DIF. To do so, in the “model 
specification” menue select the equation for the 
relevant item by clicking once on the equation and then 

click on the random term (i.e., qjr ) for the respective 

equation and it will get activated (i.e., gets black). 
Running the model by clicking the “Run analysis” 
button you will get the following output (Table 7) 
regarding the random terms of Items 15,16, and 18. As 
one can read from the table, the variance component 
for  Item 16 is still significant (p-value<0.001) which 
implies that other person covariates than gender should 
be added to the model for Item 16 to capture 
variations in test takers’ performance on the item. 
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Table 7. Final estimation of level-1 and level-2 
variance components 
Random 
Effect 

Standard 
 Deviation 

Variance 
 Component 

d.f. χ2 p-value 

X13 
slope,r13 

0.32464 0.10539 20340 20054.83849 >.500 

X15 
slope,r15 

0.54028 0.29190 20340 19031.63363 >.500 

X16 
slope,r16 

0.52583 0.27649 20340 21145.05560 <0.001 

X18 
slope,r18 

0.55096 0.30356 20340 18286.01242 >.500 

 

Adding Level-3 Predictors 

Flexibility of the Rasch HGLM permits 
researchers to add a third level to capture the clustering 
of examinees nested within classes or schools.  In a 
three-level model, at the second level, item difficulties 
are modeled as fixed across test takers as shown in 
Equaiton 13. 
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1 10
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jk k jk
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mjk m k

rβ γ
β γ

β γ

= +

=

=

 
(13) 

 

where 0 jkr represents the extent to which the ability of 

person j in school k deviates from the mean ability of 
school k. And at the third level, item difficulties can 
also be assumed fixed across schools: 
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( 1)0 ( 1)00
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k k

k

k m k

uγ π
γ π

γ π− −

= +
=

=

 (14) 

where  00ku  is the residual for school k.   In Equaiton 

14, 100γ to 00mγ , represent the difficulty for item q but 

the ability is now decomposed into a person-specific 

ability , 0 jkr ,  and the school-specific ability which is 

the average ability of students in school k. Thus the 

ability, jθ  in the standard Rasch model in Equation 7 

above, corresponds to 0 00jk kr u+ . The three-level 

model can also be extended by adding school-level 
predictors. The level-3 predictor in this study is 
university type (i.e., “unitype”). As it was explained 
before, subjects in the present study for their B.A. 
studied at four university types: state unversity, Azad 
unvirsity, Payam-e-Noor university, and nonprofit not-
government university. The model at the third level is 
specified as in Equation 15. 
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(15) 

 

                       

To add “UNITYPE”, which is the only predictor 

variable at Level 3, select the intercept equation ( 000γ ) 

and as explained above, in the left panel click on 
‘unitype’ variable.  Next, click on “add variable 
uncentered” and run the analysis. Part of the output for 
the three-level model is displayed in Table 8. According 
to this table, the type of university students attended 
had a significant effect on their performance 
(P<0.001). 

 

Table 8. Final estimation of fixed effects: (Unit-
specific model) 

Fixed Effect Coefficient 
Standard 

error 
t-ratio 

Approx. 
d.f. 

p-value 

For INTRCPT1, ̟0 
   For INTRCPT2, β00 
     INTRCPT3, 
γ000  0.142087 0.042568 3.338 224 <0.001 
      UNITYPE, 
γ001  -0.102606 0.015305 

-
6.704 224 <0.001 

 

The variance component for the intercept at the 
third level is still significant at p<0.001, as shown in 
Table 8. The implication is that more university-level 
covariates can be added to capture variations in the 
performance of the universities. According to 
Raudenbush and Bryk (2002), the amount of variance 
explained by the third-level predictor can be calculated 
using Equation 16 as follows: 
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where 
0

2
u |bσ  is the university-level residual variance for 

the intercept-only model and 
0

2
u |mσ is the university-

level residual variance for the model with “unitype” as 
the predictor. 

Table 9. Final estimation of level-3 variance 
components 

Random Effect 
Standard 

 Deviation 
Variance 

 Component 
d.f. χ2 p-value 

INTRCPT1/ 
INTRCPT2,u00 

0.21733 0.04723 224 4280.86603 <0.001 

 

Plugging in the respective values from Tables 2 
above and 9, we will have 

2 0.058 0.047
0.19

0.058
R

−= =  

The implication is that “unitype” explains about 
19% of the explainable variance at the university level.  

 

Summary 

In the present paper I tried to introduce MLMs in 
general and HGLMs in particular in an easy-to-follow 
language and illustrate their application to language 
testing data. First the ‘wide” data format was converted 
into “long” format to make it compatible with HGLM. 
Then I showed how person and item parameters can 
be estimated and items showing DIF can be detected. 
Finally, I explained how to add a third level and the 
related covariates. It was illustrated how to calculate 
the amount of variance explained after addition of the 
covariates at Levels 2 and 3. 
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