Framing Item Response Models as Hierarchical Linear Models

Measurement Incorporated Hierarchical Linear Models Workshop

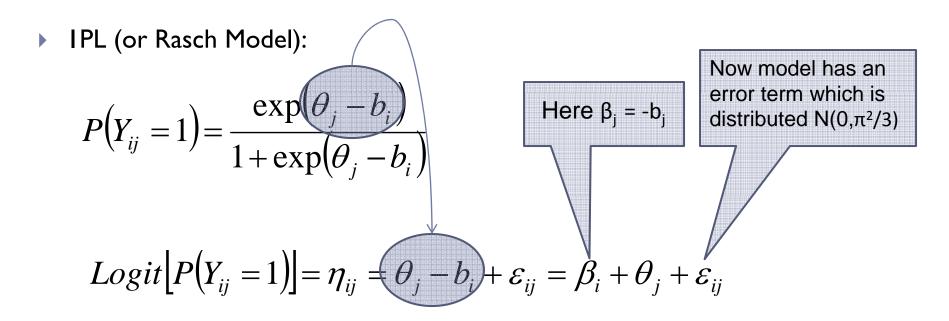
Overview

Nonlinear Item Response Theory (IRT) models.

- Conceptualizing IRT models as hierarchical generalized linear models.
- Comments on estimation for such models.

Item Response Theory Models

- To facilitate our discussion today, let me start by introducing two common IRT models: the one- and two-parameter logistic model:
 - For brevity, we omit the scaling constant from both of these.
- IPL (or Rasch Model):


► 2PL:

$$P(Y_{ij} = 1) = \frac{\exp(\theta_j - b_i)}{1 + \exp(\theta_j - b_i)}$$
$$P(Y_{ij} = 1) = \frac{\exp(a_i(\theta_j - b_i))}{1 + \exp(a_i(\theta_j - b_i))}$$

With θ_j as the ability for examinee j, b_i the difficulty for item i, and a_i the discrimination for item i.

Rephrasing IRT Models

- To show how IRT models fit into the HGLM framework, some reorganization must first take place:
 - Work only with logits (η) rather than probabilities.
 - Move from traditional parameterization to slope/intercept (similar to logistic regression):

Rephrasing IRT Models

- To show how IRT models fit into the HGLM framework, some reorganization must first take place:
 - Work only with logits (η) rather than probabilities.
 - Move from traditional parameterization to slope/intercept (similar to logistic regression):

Here
$$\beta_i = -a_i b_i$$

Here $\lambda_i = a_i$
 $P(Y_{ij} = 1) = \frac{\exp(a_i(\theta_j - b_i))}{1 + \exp(a_i(\theta_j - b_i))}$
 $Logit[P(Y_{ij} = 1)] = \eta_{ij} = a_i(\theta_j - b_i) + \varepsilon_{ij} = \beta_i + \lambda_i \theta_j + \varepsilon_{ij}$

Nonlinear Item Response Models

- Now we have reshaped IRT models, we will map them onto HGLMs
 - First, we will use the notation from Raudenbush and Byrk.
 - Accomplished by referent items and dummy codes.
- I am going to only go over the most basic case where we have a one parameter item response model.
- However, you should know that these models can be more difficult and in staying true with the Rasch type models it is simply a matter of developing dummy coded variables.

Nonlinear Item Response Models

- So why might we want to use HLM for something like this?
- The book actually gives 6 reasons:
 - Facilitates the study of multidimensional assessment.
 - Naturally incorporates variability between social settings.
 - Incorporates explanatory variables at several levels.
 - Provides a natural framework for studying measurement error.
 - Latent variables can be studied as explanatory variables.
 - Provides a natural way to deal with nonresponses.

Nonlinear Item Response Models

- So to start, in this case we assume that we have dichotomous responses to items:
 - Items are coded as either correct or incorrect (1/0).
- So there are *I* items (indexed by i) and *J* examinees (indexed by j)
- We assume that the probability (or log-odds) of a response to an item is a function of a persons ability and the difficulty of that item.

Level 1 Model

- For our level-1 model, we would like to predict the probability an examinee j answers an item i correctly.
 - We will use the logit representation to accomplish this.
- Let's start with a level-1 model where items are nested within person.

> Level-I Model:
$$\eta_{ij} = \pi_{0i} + \mathcal{E}_{ij}$$

Level-1 HGLM for IRT

$$\eta_{ij} = \pi_{0i} + \mathcal{E}_{ij}$$

- π_{0i} is the intercept (different from R & B's notation, meant to be consistent with 1- and 2-PL models).
- Level-I error is distributed N(0, $\pi^2/3$).
 - This comes from the logistic distribution for η_{ij} .

Level-2 Equations

Next, we will assume that a person's ability varies and an items difficulty is the same for all people.

• So using HLM that is:
$$\pi_{0i}=eta_{0i}+ heta_{0j}$$

- β_{0i} is the intercept (item difficulty) for item i.
- θ is the Level-2 error term.
 - The random intercept for examinee j.
- We will discuss the distribution of θ on the next slide.
- Putting the level-I and level-2 models together we get, for an item j, the original IPL (or Rasch) model:

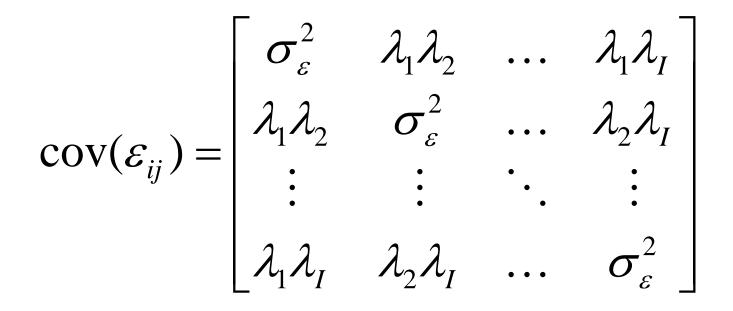
$$\eta_{ij} = \pi_{0i} + \mathcal{E}_{ij} = \beta_{0i} + \theta_{0j} + \mathcal{E}_{ij}$$

HLM Versus IRT Distinctions

- The key distinction between IRT and HLM comes from the distributional assumptions placed on θ.
- In HLM, level-2 error is typically said to be $N(0, \tau)$.
- In IRT, θ typically is said to be N(0,1).
- In both, β_i is a fixed parameter called item difficulty (or the intercept).

Item Response Models

- So in this we can see that in HLM the differences across people are summarized in τ.
- Also, we should note that because we are using the logit link everything is in the log-odds scale
- What makes this nice is that now we could see how by adding a third level (school) we could start to model:
 - > Students nested within classroom/school/district/county/state.
 - Student growth over time.
- By adding other level-2 variables, we can start to "explain" the difficulty of an item.
 - See de Boeck and Wilson's "Explanatory IRT Models" book.


Mapping the 2PL onto HGLM

- Because of the discrimination parameter, mapping the 2PL onto an HGLM is a bit more complicated.
 - We now need an additional structure for the covariance of the error terms.
- > The basic two model equations still apply (in mixed form):

$$\eta_{ij} = \pi_{0i} + \varepsilon_{ij} = \beta_{0i} + \theta_{0j} + \varepsilon_{ij}$$

Covariance of Error Terms

- Now we say that across items, the covariance matrix of ε_{ij} is below.
 - Here, λ is the item slope for item i.
- This is a heterogeneous error model.

IRT in HLM Example

- To show how to estimate an IRT model in the HLM package, we present an example.
- Data are a set of 10 items from an 8th grade End-Of-Grade reading assessment.
 - From a small Midwestern state.
 - Total of 5573 students taking a pencil-and-paper form.
 - Mainstream students without IEP or ESL.

Data File Setup

	A	В	С	D	E	F	G	Н		J	K	L	М	N	0	P	Q
1	state_id	usd	bldg	gender	total	d1	d2	d3	d4	d5	d6	d7	d8	d9	d10	item	response
2	1003770355	305	3022	0) 6	1	() () (0	0 0) () (0	1	1
3	1003770355	305	3022	0) 6	i 0	-	1 () (0	0 0) () (0	2	1
4	1003770355	305	3022	0) 6	0	(ן ו	0		0	0 0) () (0	3	1
5	1003770355	305	3022	0) 6	0	() () 1		0	0 0) () (0	4	1
6	1003770355	305	3022	0) 6	i 0	() () (1	0 0) () (0	5	0
- 7	1003770355	305	3022	0) 6	i 0	() () (0	1 0) () (0	6	0
8	1003770355	305	3022	0) 6	i 0	() () (0	0 1	() (0	7	1
9	1003770355	305	3022	0) 6	0	() () (0	0 0	1	0	0	8	0
10	1003770355	305	3022	0) 6	0	() () (0	0 0) (1	0	9	1
11	1003770355	305	3022	0) 6	0	() () (0	0 0) () (1	10	0

- Data is in "long" format each item response has it's own row.
 - Variable "response" stores item response (0/1).
- Dummy variables (d1-d10) indicate which item "response" is the response.

HLM Setup

- Because of the setup of the HLM program, we have to be somewhat selective when entering our data.
 - Enter all dummy variables into the level-1 equation.
 - Remove the level-2 intercept fixed effect term (β_{00}) .
 - Ability parameter is level-2 error (r_0) .

🔛 WHLM: hlm2	MDM File: irt.mdm Command File: irt2.hlm	
The second second second second second	Other Settings Run Analysis Help	
Outcome	LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering)	^
Level-1 >> Level-2 <<	$Prob(RESPONSE=1 \pi) = \varphi$	
INTROPT2	$Log[\varphi'(1 - \varphi)] = \eta$	
GENDER	$\eta = \pi_0 + \pi_4(D1) + \pi_2(D2) + \pi_3(D3) + \pi_4(D4) + \pi_5(D5) + \pi_6(D6) + \pi_7(D7) + \pi_8(D8) + \pi_9(D9) + \pi_{40}(D10)$	
	LEVEL 2 MODEL (bold italic: grand-mean centering)	
	$\pi_0 = r_0$	_
	$\pi_{ij} = \beta_{ij} + r_{ij}$	_
	$\pi_2 = \beta_{10} + r_2$	
	$\pi_3 = \beta_{10} + r_3$	
	$\pi_{4} = \beta_{10} + r_{4}$	
	$\pi_5 = \beta_{10} + r_5$	
	$\pi_6 = \beta_{60} + r_6$	
	$\pi_7 = \beta_{10} + r_7$	
	$\pi_8 = \beta_{80} + r_8$	
	$\pi_9 = \beta_{10} + r_9$	
	$\pi_{10} = \mu_{100} + r_{10}$	
	10 100 10	
	Міз	ced (
Mixed Model		
η = β ₁₀ *D1 + β	$b_{20}*D2 + \beta_{20}*D3 + \beta_{40}*D4 + \beta_{50}*D5 + \beta_{60}*D6 + \beta_{70}*D7 + \beta_{80}*D8 + \beta_{90}*D9 + \beta_{100}*D10 + r_{0}$	
	\uparrow	
1		

HLM IRT Model Output: Variance Components

- First, we can look at the results for our Level-2 variance (τ_{00}) .
 - This is the variance of the latent trait (θ).

Final estimation of variance components:									
Random Effect		Standard Deviation	Variance Component	df	Chi-square	P-value			
INTRCPT1,	RÔ	0.55302	0.30583	5574	9608.61581	0.000			

• $\tau_{00} = 0.306$, meaning $\theta \sim N(0, 0.306)$.

HLM IRT Model Output: Fixed Effects

- The fixed effects give us the item difficulty values.
 - Recall, difficulty from HLM is really -1 times the actual difficulty.
 - Item easiness parameterization (higher values mean easier items).

Final estimation of fixed effects (Unit-specific model with robust standard errors)

Fixed Effe	ect	C	oefficient	Standard Error	T-ratio	Approx. d.f.	P-value
For D1 INTRCPT2, For D2	B10 slope,	P2	0.384489	0.028065	13.700	55730	0.000
INTRCPT2, For D3 INTRCPT2, For D4	slope, B30	Р3	0.558127 -0.045281	0.028557 0.027611	19.544 -1.640	55730 55730	0.000 0.101
INTRCPT2, For D5 INTRCPT2,	B40 slope, B50	Р5	0.124324 0.090195	0.027658 0.027639	4.495 3.263	55730 55730	0.000 0.001
For D6 INTRCPT2, For D7 INTRCPT2,	B60 slope,		-1.161956 0.259437	0.031887 0.027818	-36.439 9.326	55730 55730	0.000 0.000
For D8 INTRCPT2, For D9	slope, B80 slope,		-0.261952	0.027824	-9.414	55730	0.000
INTRCPT2, For D10 INTRCPT2,	slope,	P10	-0.143912 0.257183	0.027681		55730 55730	0.000 0.000

Measurement Incorporated HLM Workshop March 14, 2008

HLM IRT Model Output: Fixed Effects

ltem i	Easiness (β _{i0})	Fixed Effect	Coefficient		
I	0.384	For D1 slope, INTRCPT2, B10			
2	0.558	For D2 slope, INTRCPT2, B20	P2 '		
3	-0.453	For D3 slope, INTRCPT2, B30	Р3		
4	0.124	For D4 slope, INTRCPT2, B40	P4		
5	0.090	For D5 slope, INTRCPT2, B50	P5 0.090195		
6	-1.162	For D6 slope, INTRCPT2, B60	-1.161956		
7	0.259	For D7 slope, INTRCPT2, B70	0.259437		
8	-0.262	For D8 slope, INTRCPT2, B80	-0.261952		
9	-0.144	For D9 slope, INTRCPT2, B90 For D10 slope,	-0.143912		
10	0.257	INTRCPT2, B100			

HLM IRT Example Extension

- Now, we will demonstrate how to assess DIF in an HLM context.
- Now we would like to check for differences in item difficulty as a function of the gender of an examinee.
- Gender is a level-2 variable.
 - We have ours dummy-coded (male = 1, female = 0).
- Hypothesis test for parameters will indicate DIF for each item.

HLM IRT DIF Setup

	MDM File: irt1.mdm Command File: irt1 dif.hlm								
Outcome	LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering)								
Level-1	$Prob(RESPONSE=1 \pi) = \varphi$								
>> Level-2 << INTRCPT2	$Log[\varphi/(1-\varphi)] = \eta$								
GENDER	$\eta = \pi_0 + \pi_1(D1) + \pi_2(D2) + \pi_3(D3) + \pi_4(D4) + \pi_5(D5) + \pi_6(D6) + \pi_7(D7) + \pi_8(D8) + \pi_6(D9) + \pi_{10}(D10)$								
	LEVEL 2 MODEL (bold italic: grand-mean centering)								
	$\pi_0 = r_0$								
	$\pi_1 = \beta_{10} + \beta_{11} (\text{GENDER}) + r_1$								
	$\pi_2 = \beta_{20} + \beta_{21} (\text{GENDER}) + r_2$								
	$\pi_3 = \beta_{30} + \beta_{31} (\text{GENDER}) + r_3$								
	$\pi_{4} = \beta_{40} + \beta_{41} (\text{GENDER}) + r_{4}$								
	$\pi_5 = \beta_{50} + \beta_{51} (\text{GENDER}) + r_5$								
	$\pi_6 = \beta_{60} + \beta_{61} (\text{GENDER}) + r_6$								
	$\pi_7 = \beta_{70} + \beta_{71} (\text{GENDER}) + r_7$								
	$\pi_8 = \beta_{80} + \beta_{81} (\text{GENDER}) + r_8$								
	$\pi_{g} = \beta_{g0} + \beta_{g1} (\text{GENDER}) + r_{g}$								
	$\pi_{10} = \beta_{100} + \beta_{101} (\text{GENDER}) + r_{10}$								
Mixed Model	Mi×ed ⊻								
and a second									
	$\beta_{11}*GENDER*D1 + \beta_{20}*D2 + \beta_{21}*GENDER*D2 + \beta_{30}*D3 + \beta_{31}*GENDER*D3 + \beta_{40}*D4 + $								
	$PR*D4 + \beta_{50}*D5 + \beta_{51}*GENDER*D5 + \beta_{60}*D6 + \beta_{61}*GENDER*D6 + \beta_{70}*D7 + \beta_{71}*GENDER*D7 + \beta_{70}*D7 + \beta_{71}*GENDER*D7 + \beta_{70}*D7 + \beta_{71}*GENDER*D7 + \beta_{70}*D7 + \beta_{71}*GENDER*D7 + \beta_{71}*$								
₽ ₈₀ *Do +	β_{81} *GENDER*D8 + β_{90} *D9 + β_{91} *GENDER*D9 + β_{100} *D10 + β_{101} *GENDER*D10 + r_0								

HLM IRT DIF Model Output: Variance Components

- First, we can look at the results for our Level-2 variance (τ_{00}) .
 - This is the variance of the latent trait (θ).

-

Final estimati	on or	variance compone	nts: 			
Random Effect		Standard Deviation	Variance Component	df	Chi-square	P-value
INTRCPT1,	RÛ	0.55474	0.30773	5574	9622.87365	0.000

- $\tau_{00} = 0.307$, meaning $\theta \sim N(0, 0.307)$.
- This is different by 0.001 from before.
 - A quirk of the estimation algorithm more on that later.

HLM IRT Model Output: Fixed Effects

- The fixed effects give us the item difficulty values.
- The GENDER variable provides the difference in difficulty value for the males.
- The p-value of GENDER allows for the hypothesis test of DIF for each item.

Fixed Effect		Coefficient	Standard Error		Approx. d.f.	P-value
For D1 slo	 ре, Р1					
INTRCPT2, B10	-	0.447785	0.039296	11.395	55720	0.000
GENDER, B11		-0.129784	0.056184	-2.310	55720	0.021
For D2 slo	ре, Р2	0.526529	0.039601	13.296	55720	0.000
INTRCPT2, B20 GENDER, B21		0.065834	0.057180	1.151	55720	0.000
For D3 slo		0.001834	0.01/100	T. T.	55720	0.230
INTRCPT2, B30		0.010658	0.038425	0.277	55720	0.781
GENDER, B31		-0.115640	0.055287	-2.092	55720	0.036
For DÁ slo						
INTRCPT2, B40		0.014962		0.389	55720	0.697
GENDER, B41		0.226762	0.055448	4.090	55720	0.000
For D5 slo						
INTRCPT2, B50		0.000616	0.038435	0.016	55720	0.987
GENDER, B51 For D6 slo	no 06	0.185484	0.055380	3.349	55720	0.001
INTRCPT2, B60	ре, го	-1.141047	0.044184	-25.825	55720	0.000
GENDER, B61		-0.043948	0.063845	-0.688	55720	0.491
For D7 slo		0.040040	0.000040	0.000	55728	0.401
INTRCPT2, B70		0.212233	0.038626	5.495	55720	0.000
GENDER, B71		0.097950	0.055703	1.758	55720	0.078
For D8 slo						
INTRCPT2, B80		-0.132979	0.038513	-3.453	55720	0.001
GENDER, B81		-0.268775	0.055838	-4.813	55720	0.000
For D9 slo		-0.074014	0.038466	-1.924	55720	0.054
INTRCPT2, B90 GENDER, B91		-0.144810	0.055444	-2.612	55720	
	pe, P10		0.000444	-2.012	55720	0.009
INTROPT2, B10			0.039167	10.478	55720	0.000
GENDER, B10		-0.313385		-5.614		

Final estimation of fixed effects (Unit-specific model with robust standard errors)

Measurement Incorporated HLM Workshop March 14, 2008

HLM IRT Model Output: Fixed Effects

- Low p-values indicate significant differences in item difficulty for each gender.
- The effect size (in logits) is the estimate for GENDER.

Final estimation of fixed effects (Unit-specific model with robust standard errors)

Fixed Effe	ect		Coefficient	Standard Error	T-ratio	Approx. d.f.	P-value
For D1	slope,	P1					
INTROPT2.	B10		0.447785	0.039296	11.395		
GENDER,	в11		-0.129784	0.056184	-2.310	55720	0.021
For D2	slope,	ΡZ	0 506500	0.000001	10 000	55330	~ ~~~
INTROPT2,			0.526529 0.065834	0.039601 0.057180	$13.296 \\ 1.151$	55720 55720	0.000 0.250
GENDER, For D3		D2	0.003834	0.05/180	T.T)T	33720	0.250
INTRCPT2,		FD	0.010658	0 038425	0.277	55720	0.781
GENDER,			-0.115640	0.055287	-2.092	55720	0.036
For D4	slope.	P4	0.1100.0		2.052	55120	
INTRCPT2,			0.014962	0.038435	0.389	55720	0.697
GENDER,	в41		0.226762	0.055448	4.090	55720	0.000
For D5		Р5					
INTROPT2,			0.000616		0.016	55720	0.987
GENDER,	851		0.185484	0.055380	3.349	55720	0.001
For D6	slope,	Pб	1 141047	0 044104	25 025	55770	~ ~~~
INTROPT2,			-1.141047 -0.043948	0.044184 0.063845	-25.825 -0.688	55720 55720	$0.000 \\ 0.491$
GENDER, For D7		D 7	-0.043948	0.063845	-0.000	33720	0.491
INTROPT2,		F/	0.212233	0.038626	5.495	55720	0.000
GENDER,			0.097950	0.055703	1.758	55720	0.078
For D8		P8			1	55120	
INTRCPT2,		1	-0.132979	0.038513	-3.453	55720	0.001
GENDER,	в81		-0.268775	0.055838	-4.813	55720	0.000
For D9		Р9					
INTROPT2,			-0.074014	0.038466	-1.924		0.054
GENDER,		-10	-0.144810	0.055444	-2.612	55720	0.009
For D10		PIO	0 410292	0 020167	10 479	55770	0.000
INTRCPT2, GENDER,			0.410383 -0.313385	0.039167 0.055820	-5.614	55720 55720	
GENDER,			-0.313301		-5.014		

Measurement Incorporated HLM Workshop March 14, 2008

Estimation Issues

- The HLM program uses an estimation method called Penalized Quasi-Likelihood (PQL).
 - Approximates the maximum likelihood function.
 - This method can produce biased results.
 - Can be very unstable because of complicated integral.
- For this reason, we recommend *not* using HLM to fit IRT models.
- Instead try the following:
 - Mplus
 - SAS proc nlmixed
 - Bayesian methods in R (i.e. glmmgibbs package).