Framing Item Response Models as
Hierarchical Linear Models

Measurement Incorporated
Hierarchical Linear Models Workshop




Overview

» Nonlinear Item Response Theory (IRT) models.

» Conceptualizing IRT models as hierarchical generalized
linear models.

» Comments on estimation for such models.
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[tem Response Theory Models

» To facilitate our discussion today, let me start by introducing two common
IRT models: the one- and two-parameter logistic model:

For brevity, we omit the scaling constant from both of these.
exp(9; - b,)
1+ exp(@j —D, )
exola 0, )
1+expla, (Hj ~b,))

» |IPL (or Rasch Model): P(Yij — 1):

» 2PL: P(Yij = 1)=

» With 6, as the ability for examinee j, b; the difficulty for item i, and a; the
discrimination for item i.
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Rephrasing IRT Models

» To show how IRT models fit into the HGLM framework, some
reorganization must first take place:

Work only with logits (n) rather than probabilities.

Move from traditional parameterization to slope/intercept (similar to logistic
regression):

» |PL (or Rasch Model):

Now model has an
error term which is
distributed N(0,m?/3)
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Rephrasing IRT Models

» To show how IRT models fit into the HGLM framework, some
reorganization must first take place:

Work only with logits (n) rather than probabilities.

Move from traditional parameterization to slope/intercept (similar to logistic
regression):

Here B, = -ab,

» 2PL:

Now model has an

p(Y__ — 1) — error term which is

distributed N(0,m?/3)

LogitLP(Yij :1)J: 7 +&; =+ 40, + ¢,
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Nonlinear Item Response Models

» Now we have reshaped IRT models, we will map them onto
HGLMs

First, we will use the notation from Raudenbush and Byrk.

Accomplished by referent items and dummy codes.

» | am going to only go over the most basic case where we have
a one parameter item response model.

» However, you should know that these models can be more
difficult and in staying true with the Rasch type models it is
simply a matter of developing dummy coded variables.
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Nonlinear Item Response Models

» So why might we want to use HLM for something like this?

» The book actually gives 6 reasons:

Facilitates the study of multidimensional assessment.

Naturally incorporates variability between social settings.
Incorporates explanatory variables at several levels.

Provides a natural framework for studying measurement error.
Latent variables can be studied as explanatory variables.
Provides a natural way to deal with nonresponses.
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Nonlinear Item Response Models

» So to start, in this case we assume that we have
dichotomous responses to items:

Items are coded as either correct or incorrect (1/0).

» So there are | items (indexed by i) and | examinees
(indexed by )

» We assume that the probability (or log-odds) of a
response to an item is a function of a persons ability and
the difficulty of that item.
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Level 1 Model

» For our level-1 model, we would like to predict the probability
an examinee j answers an item i correctly.

We will use the logit representation to accomplish this.

» Let’s start with a level-1 model where items are nested within
person.

» Level-1 Model: 77|J — 7Z-Oi T gij
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Level-1 HGLM for IRT
Mij = Toi T &j

» T is the intercept (different from R & B’s notation, meant to
be consistent with 1- and 2-PL models).

» Level-I error is distributed N(0, %/3).

This comes from the logistic distribution for n.
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Level-2 Equations

» Next, we will assume that a person’s ability varies and an
items difficulty is the same for all people.

» So using HLM thatis: 7Ty = :B()i T ‘90j

Boi is the intercept (item difficulty) for item i.

O is the Level-2 error term.

The random intercept for examinee j.

We will discuss the distribution of 8 on the next slide.

» Putting the level-1 and level-2 models together we get, for an
item j, the original |PL (or Rasch) model:

i = Toi + & = Poi T 0 +&;
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HLM Versus IRT Distinctions

» The key distinction between IRT and HLM comes from
the distributional assumptions placed on 0.

» In HLM, level-2 error is typically said to be N(0, T).

» In IRT, B typically is said to be N(0O, ).

» In both, B, is a fixed parameter called item difficulty (or
the intercept).
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[tem Response Models

» So in this we can see that in HLM the differences across people are
summarized in T.

» Also, we should note that because we are using the logit link everything is
in the log-odds scale

» What makes this nice is that now we could see how by adding a third level
(school) we could start to model:

Students nested within classroom/school/district/county/state.
Student growth over time.

» By adding other level-2 variables, we can start to “explain” the difficulty of
an item.

See de Boeck and Wilson’s “Explanatory IRT Models” book.
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Mapping the 2PL onto HGLM

» Because of the discrimination parameter, mapping the 2PL
onto an HGLM is a bit more complicated.

We now need an additional structure for the covariance of the
error terms.

» The basic two model equations still apply (in mixed form):

i = Toi + & = Poi T 0y + &
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Covariance of Error Terms

» Now we say that across items, the covariance matrix of g;
is below.

Here, A is the item slope for item i.

» This is a heterogeneous error model.

o2 AA, ... AA
AA, ol . A4

&

cov(g;) =

LA A ... oF

15 Measurement Incorporated HLM Workshop March 14, 2008



IRT in HLM Example

» To show how to estimate an IRT model in the HLM
package, we present an example.

» Data are a set of 10 items from an 8*" grade End-Of-
Grade reading assessment.

From a small Midwestern state.

Total of 5573 students taking a pencil-and-paper form.
Mainstream students — without IEP or ESL.
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Data File Setup
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» Data is in “long” format — each item response has it’s own

FOW.

Variable “response” stores item response (0/1).

» Dummy variables (d1-d10) indicate which item
“response” is the response.
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HLM Setup

» Because of the setup of | _
the HLM program, we F

Level-1

>3 Level? << Prob(RESPONSE=1]n) = ¢

have to be somewhat ToRcErs | Lol

n = my o+ w, (D) + 1,(02) +n,(03) +n,(D4) + n,(DS) +n(DB) +n, (D7) + m (DB} + 2, (D9 + =, (D10)

LEVEL 2 MODEL (hold italic: grand-mean centering)

selective when entering N o
our data.

into the level-1 equation.

S @m0 o o o @& @

-
3 f
1:4=[5
Enter all dummy variables v
-
) f
s = P

Remove the level-2
intercept fixed effect term

(B ) 0= B Dl B a0 B kD3 + B #Dd + B0 + BotDB + o 07+, #08 + [ 08 + o «D0 e, 2
00/° )

=
=3

Mixed Model

Ability parameter is level-2
error (ry)- :
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HLM IRT Model Output:
Variance Components

» First, we can look at the results for our Level-2 variance

(Too)-
This is the variance of the latent trait (0).

Final estimation of wariance components:

random Effect Standard variance df Chi-square P-wvalue
Deviatiaon Companent
IMTRCZPTL, RO 0. 55302 0.30585 5574 9505, 51581 0. 000

Tpo = 0.306, meaning 6 ~ N(0, 0.306).
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HLM IRT Model Output: Fixed Effects

» The fixed effects give us the item difficulty values.

Recall, difficulty from HLM is really -1 times the actual difficulty.

Item easiness parameterization (higher values mean easier items).

Final estimation of fixed effects
fUnit-specific model with robust standard errors)

Standard Approx.

Fixed Effect Coefficient Errar T-ratio d.f. P-value
For 0l =slope, Fl

INTRCZPTZ, E1OQ | 0. 3584489 0. 028085 13,700 55730 0,000
Far 02 slope, P2

INTRZPTZ, EBZ20Q 0. 558127 0.028557 19, 544 55730 0. 000
For 03 slope, P3

INTRCZPTZ, B30 -0, 045281 0.027611 =-1.840 55730 0,101
For 04 =slope, P4

INTRZPTZ, EB40Q 0.124324 0.027658 4,455 55730 0. 000
Far 05 slope, PS

INTRCZPTZ, BISO 0. 0590195 0.027639 3.283 55730 0. 001
Far 06 slope, PS

INTRCZPTZ, B&O -1.161956& 0. 031887 -36.439 55730 0. 000
For 07 slope, P7

INTRZPTZ, BYOQ 0.25%9437 0. 027818 9.326 55730 0. 000
For 08 slope, P8

INTRCZPTZ, BEO -0.261952 0. 027824 -9.414 55730 0. 000
For 0% slope, P9

INTRCZPTZ, B9O -0.145912 0. 0276881 -5.1%59%9 55730 0. 000
For 0l slope, PLO

INTRZPTZ, EL1OQOQ 0.257183 0.027824 9,243 55730 0. 000
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HLM IRT Model Output: Fixed Effects

Easiness (B,,) Fixed Effect coefficient

| 0.384 —=er— ol _slope, Pl
INTRCPTZ, BLOD T 0.354450
2 ) “ar 02 =lope, P
0.558 INTRCPTZ, BZO 0.558127
: “ar D3 =lope, P3
3 0.453 INTRCPTZ, B30 -0, 045281
Sluly D4 =lope, P4
4 0.124 INTRCPTZ, EB40O 0.1243524
Sluly DS =lope, PS5
5 0.090 INTRCPT2, BSO 0.090105
Tar D6 slope, PG
6 -1.162 INTRCPTZ, BEO ~1.161556
Tar D7 slope, P7T
7 0.259 INTRCPTZ, EB7O 0.2559437
Tar D8 slope, PH
8 -0.262 INTRCPTZ, ESO -0, 2615952
Sluly DS =lope, PO
9 _0. |44 INTRCPTZ, BSO ~0.143912
0 Sluly Dlo slope, PLO
10 0.257 INTRCPTZ, BLOO 0. 257183
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HLM IRT Example Extension

» Now, we will demonstrate how to assess DIF in an HLM
context.

» Now we would like to check for differences in item
difficulty as a function of the gender of an examinee.

» Gender is a level-2 variable.

We have ours dummy-coded (male = I, female = 0).

» Hypothesis test for parameters will indicate DIF for each
item.
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HLM IRT DIF Setup

B8 WHLM: him2 MDM File: irt.mdm Command File: irt1dif. him

File Basic Settings  Other Settings  Run Anaksis  Help

LEVEL 2 MODEL chold itslic: grand-mean centering)

=r

Mg 0

%, = fiyp + by, (GENDER
Ry = fgp + gy (GENDER
g = Byp + gy (GENDER
Tg

7y = Bgp + Py (GENDER

Ty = Pgy T hg

Outcome LEVEL 1 MODEL rbald: group-mean centering, bold ttalic: grand-mean centering)
Level-1
5> Level? << | PrebRESPONSE=1l) = ¢
INTRCPT2 Logle/(1 - )] =1
GENDER N = my (D) +m,(D2) +ny(03) +m,(D4) + ng(05) + ws(06) + m,(07) +w,g[08) +mg(0F) +,,(D10)

T

10 = Pagg * Bygy(GENDER)

N = P D1+, #GENDERHDT + f,#D2 + b, #GENDER#DZ + b #D3 + b, #GENDER#DS + b +D4 +
B 4y*GENDER*DA + p5#D5 + s »GENDER#DS + pizy*DB + f g *GENDER*DE + f,#D7 + b, *GENDER=D7 +
BagDB + Py *GENDERDE + fzy*D9 + o #*GENDER*DS + B, #D10 + b, #GENDER*D10 + 1,

1>

[ 3
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HLM IRT DIF Model Output:
Variance Components

» First, we can look at the results for our Level-2 variance

(Too)-
This is the variance of the latent trait (0).

Final estimation of wvariance components:

random Effect Standard variance df Chi-square P-value
Deviation Component
IMNTRCPTL, RO 0.55474 0.3077s 5574 DE22, 87565 0. 000

Too = 0.307, meaning 6 ~ N(0, 0.307).
This is different by 0.001 from before.
A quirk of the estimation algorithm — more on that later.
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HLM IRT Model Output: Fixed .

» The fixed effects
give us the item
difficulty values.

» The GENDER
variable provides
the difference in
difficulty value for
the males.

» The p-value of
GENDER allows
for the hypothesis
test of DIF for
each item.
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Final estimation of fixed effects

(Unit-specific model with robust standard errors)

sffects

Standard
Error

T-ratio

Approx.
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HLM IRT Model Output: Fixed .

» Low p-values
indicate significant
differences in item
difficulty for each
gender.

» The effect size (in
logits) is the
estimate for
GENDER.
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Final estimation of fixed effects

(Unit-specific model with robust standard errors)
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Estimation Issues

» The HLM program uses an estimation method called Penalized
Quasi-Likelihood (PQL).
Approximates the maximum likelihood function.
This method can produce biased results.

Can be very unstable because of complicated integral.

» For this reason, we recommend not using HLM to fit IRT
models.

» Instead try the following:
Mplus
SAS proc nlmixed
Bayesian methods in R (i.e. glmmgibbs package).
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